A 1/2.8-inch 24Mpixel CMOS image sensor with 0.9μm unit pixels separated by full-depth deep-trench isolation

Yitae Kim, Wonchul Choi, D. Park, H. Jeoung, Bumsuk Kim, Youngsun Oh, Sung-Hun Oh, Byungjun Park, Euiyeol Kim, Yunki Lee, T. Jung, Yongwoong Kim, Sukki Yoon, Seokyong Hong, Jesuk Lee, Sangil Jung, Changrok Moon, Yongin Park, Duckhyung Lee, Duckhyun Chang
{"title":"A 1/2.8-inch 24Mpixel CMOS image sensor with 0.9μm unit pixels separated by full-depth deep-trench isolation","authors":"Yitae Kim, Wonchul Choi, D. Park, H. Jeoung, Bumsuk Kim, Youngsun Oh, Sung-Hun Oh, Byungjun Park, Euiyeol Kim, Yunki Lee, T. Jung, Yongwoong Kim, Sukki Yoon, Seokyong Hong, Jesuk Lee, Sangil Jung, Changrok Moon, Yongin Park, Duckhyung Lee, Duckhyun Chang","doi":"10.1109/ISSCC.2018.8310195","DOIUrl":null,"url":null,"abstract":"CMOS image sensors (CIS) have attracted much attention for the emerging mobile market, and the demand of high-resolution image sensors in mobile applications continues to increase [1-3]. For this reason, pixel pitch has been reduced down to 1.0μσι for mass production. Nevertheless, CISs are continuously scaling down to meet the strong demand for higher-resolution images. However, when the pixel size is reduced down to the sub-micron regime (possibly smaller than the diffraction limit), it is very important to consider photo sensitivity and crosstalk, which determine signal-to-noise ratio (SNR). To minimize degradation of photo sensitivity, back-side illumination (BSI), which collects light at the back side, is widely used instead of front-side illumination. In addition to BSI technology, deep-trench isolation (DTI) has emerged as a leading candidate to suppress crosstalk since it physically isolates the pixel. Previous work shows that partial-depth DTI can be applied in a 1.12μm-pitch pixel [4]. Furthermore, full-depth DTI has been demonstrated in a 1.12μm pixel with 24% larger full-well capacity (FWC), 30% smaller YSNR10, 2.0dB higher SNR, and especially for lower crosstalk (12.5%) compared with a conventional one [5]. In this work, a 24-Mpixel CIS with 0.9μσι unit pixels that takes advantage of full-depth DTI is demonstrated.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"7 1","pages":"84-86"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

CMOS image sensors (CIS) have attracted much attention for the emerging mobile market, and the demand of high-resolution image sensors in mobile applications continues to increase [1-3]. For this reason, pixel pitch has been reduced down to 1.0μσι for mass production. Nevertheless, CISs are continuously scaling down to meet the strong demand for higher-resolution images. However, when the pixel size is reduced down to the sub-micron regime (possibly smaller than the diffraction limit), it is very important to consider photo sensitivity and crosstalk, which determine signal-to-noise ratio (SNR). To minimize degradation of photo sensitivity, back-side illumination (BSI), which collects light at the back side, is widely used instead of front-side illumination. In addition to BSI technology, deep-trench isolation (DTI) has emerged as a leading candidate to suppress crosstalk since it physically isolates the pixel. Previous work shows that partial-depth DTI can be applied in a 1.12μm-pitch pixel [4]. Furthermore, full-depth DTI has been demonstrated in a 1.12μm pixel with 24% larger full-well capacity (FWC), 30% smaller YSNR10, 2.0dB higher SNR, and especially for lower crosstalk (12.5%) compared with a conventional one [5]. In this work, a 24-Mpixel CIS with 0.9μσι unit pixels that takes advantage of full-depth DTI is demonstrated.
1/2.8英寸24Mpixel CMOS图像传感器,采用全深度深沟隔离技术分离0.9μm单位像素
CMOS图像传感器(CIS)在新兴的移动市场备受关注,移动应用对高分辨率图像传感器的需求不断增加[1-3]。因此,为了量产,像素间距已经降低到1.0μσι。尽管如此,CISs仍在不断缩小规模,以满足对高分辨率图像的强烈需求。然而,当像素尺寸减小到亚微米级(可能小于衍射极限)时,考虑光敏度和串扰是非常重要的,它们决定了信噪比(SNR)。为了最大限度地减少光敏度的下降,在背面收集光线的背面照明(BSI)被广泛使用,而不是正面照明。除了BSI技术,深沟隔离(DTI)已经成为抑制串扰的主要候选技术,因为它在物理上隔离了像素。先前的研究表明,部分深度DTI可以应用于1.12μm-pitch像素[4]。此外,在1.12μm像素的全深度DTI中,与传统DTI相比,全井容量(FWC)提高24%,YSNR10降低30%,信噪比提高2.0dB,特别是串扰(12.5%)更低[5]。在这项工作中,展示了一个利用全深度DTI的2.4百万像素、0.9μσι单位像素的CIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信