{"title":"Optical dispersion models for graphene: Integration-free formulations","authors":"L. Prokopeva, Z. Kudyshev, A. Kildishev","doi":"10.1109/METAMATERIALS.2016.7746479","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746479","url":null,"abstract":"Kubo's formalism for graphene surface conductivity is so far the most popular technique to model graphene in optics. However, its original integral form makes it inefficient for numerical evaluation and coupling to electromagnetic solvers since numerical integration shall be employed. In this paper we propose a Kubo-equivalent integration-free formulation for the computationally efficient modeling of the surface conductivity of graphene in time and frequency domains.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"10 1 1","pages":"178-180"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83625731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Uskov, I. Smetanin, I. Protsenko, J. Khurgin, M. Buret, A. Bouhelier
{"title":"Nanoscale constriction as a source of plasmons for plasmonic nanocircuitries","authors":"A. Uskov, I. Smetanin, I. Protsenko, J. Khurgin, M. Buret, A. Bouhelier","doi":"10.1109/METAMATERIALS.2016.7746405","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746405","url":null,"abstract":"We investigate spontaneous light emission by electrons passing through a nanoscale metal constriction and find that the Purcell-enhanced emission is engendered by two distinct mechanisms. In the first mechanism emission is caused by electron colliding with the effective potential of the mesoscopic contact while the second mechanism involves collisions of electrons with the walls of the constriction. We find that multiple collisions with the walls can lead to the orders-of-magnitude higher light emission probability in comparison to a single collision with the effective potential.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"41 1","pages":"376-378"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83631566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasmonic luminescence enhancement by metal nanoparticles embedded in nanofibers","authors":"R. Jurga, F. Della Sala, C. Ciracì","doi":"10.1109/METAMATERIALS.2016.7746468","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746468","url":null,"abstract":"Quantum optics applications rely crucially on the control and long range transport of single-photons. We investigate how embedding a metal nanoparticle with an optical emitter in a fiber modifies the emission properties of the emitter. By coupling the light emitter to a metal nanoparticle, we show that the emission rates, Purcell factor and quantum yield are increased due to the combined effects originating both from the confinement in the fiber and from the nanoparticle's plasmonic enhancement. We simulate numerically a fiber of permittivity ε = 4 containing a silver nanoparticle of radius 30 nm and find that the quantum yield enhancement can be up to 2.5 larger than in free space.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"126 1","pages":"148-150"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80046898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impedance approach to modeling and designing acoustic metamaterials","authors":"Y. Bobrovnitskiĭ","doi":"10.1109/METAMATERIALS.2016.7746436","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746436","url":null,"abstract":"Theoretical solutions to the problems of acoustic invisibility (cloaking), of superabsorber of sound and some other are obtained in terms of certain surface impedance characteristics. The solutions can be realized with the help of coatings made of 2D acoustic or mechanical metamaterials that provide the needed surface impedances. Results of computer simulation and laboratory experiments of applying the impedance approach to the problems of cloaking and of the best absorber of sound are presented.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"27 1","pages":"61-63"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79012350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Dipalo, F. Tantussi, V. Caprettini, A. Jacassi, V. Shalabaeva, A. Cerea, S. Perotto, F. De Angelis
{"title":"Mimicking and interfacing neuro-biological architectures with nanostructured materials","authors":"M. Dipalo, F. Tantussi, V. Caprettini, A. Jacassi, V. Shalabaeva, A. Cerea, S. Perotto, F. De Angelis","doi":"10.1109/METAMATERIALS.2016.7746449","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746449","url":null,"abstract":"In natural environments commonly appear periodic micro- and nano-structures exhibiting macroscopic properties different from the ones on the single elements. Typical examples are butterfly wings in optics, lotus leaves in fluidics or complex 3D neuronal networks in neuroscience and biology. Within this context, mimicking the intrinsic regularity exhibited by natural architectures can lead to unprecedented results addressing fundamental science but also intriguing challenges in technological applications. Here we will describe results we achieved by combining plasmonic nanostructures with nature-inspired superhydrophobic metamaterials. Then, we will try to extend this concept to the recent development of electronic devices with neuromorphic architectures for future computing.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"72 1","pages":"97-99"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77171602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Colombi, P. Roux, D. Colquitt, R. Craster, S. Guenneau
{"title":"Conversion and reflection of Rayleigh waves with the seismic metawedge","authors":"A. Colombi, P. Roux, D. Colquitt, R. Craster, S. Guenneau","doi":"10.1109/METAMATERIALS.2016.7746382","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746382","url":null,"abstract":"By combining concepts from elasticity, photonics and metamaterials, we present a seismic metasurface capable to convert or reflect seismic Rayleigh waves propagating in a sedimentary ground. The metasurface is obtained with an array of trees, with their height gradually decreasing to form a wedge-like profile, “the metawedge”. Local resonance phenomena between trees and ground, combined with the spatially varying profile of the wedge give rise to a twofold behavior depending on the incidence direction of the wavefront: (1) Rayleigh to shear wave conversion or (2) Rayleigh wave reflection.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"85 1","pages":"313-315"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78148561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the application of Snell's law for refracted graphene surface plasmon polaritonwaves","authors":"S. Amanatiadis, N. Kantartzis","doi":"10.1109/METAMATERIALS.2016.7746489","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746489","url":null,"abstract":"The direction of refracted graphene surface plasmon polariton waves due to the variation of their effective index is estimated in the current work. After the extraction of the fundamental relationships for the propagation properties of a graphene surface wave, the effective index is derived and the well-known Snell's law is utilized. Moreover, the direction angle is obtained by means of a comprehensive numerical analysis, addressing an accurate finite-difference time-domain algorithm, which validates all theoretical estimations.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"29 1","pages":"19-21"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74531445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Zuev, S. Makarov, V. Milichko, S. Starikov, I. Mukhin, I. Morozov, A. Krasnok, P. Belov
{"title":"Reconfigurable metal-dielectric nanodimers as component of hybrid nanophotonics","authors":"D. Zuev, S. Makarov, V. Milichko, S. Starikov, I. Mukhin, I. Morozov, A. Krasnok, P. Belov","doi":"10.1109/METAMATERIALS.2016.7746426","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746426","url":null,"abstract":"Unification of plasmonics and all-dielectric nanophotonics in one system offers advantages in terms of light manipulation at nanoscale. In this work we demonstrate a novel type of asymmetrical hybrid nanostructures fabricated via combination of conventional lithographical methods with fs laser reshaping at nanoscale. The method of such type structures fabrication makes possible accurate engineering both electric and magnetic optical resonances of the hybrid nanoparticle. We apply this approach to a hybrid metasurface, demonstrating tuning of scattering properties and considerable shift of the resonant transmittance spectral position on 250 nm in the visible range.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"215 1","pages":"433-435"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76555622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All-dielectric bianisotropic metasurfaces","authors":"M. Odit, P. Kapitanova, Y. Kivshar, P. Belov","doi":"10.1109/METAMATERIALS.2016.7746428","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746428","url":null,"abstract":"Bianisotropic all-dielectric metasurfaces are demonstrated experimentally and their properties are studied in the microwave frequency range. Such metasurfaces are composed of dielectric particles with broken symmetry that exhibit different backscattering for the opposite excitation directions. An array of dielectric bianisotropic ceramic particles is fabricated and experimentally investigated for microwaves. The measured data demonstrate that the metasurface is characterized by different reflection phases when being excited from the opposite directions. At the frequency 6.7 GHz the metasurface provides a 2π phase change in the reflection spectrum with the amplitude close to 1.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"28 1","pages":"439-442"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76072504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hedayati, A. Yakovlev, M. Silveirinha, G. Hanson
{"title":"A local thickness dependent permittivity model for nonlocal bounded wire medium structures","authors":"M. Hedayati, A. Yakovlev, M. Silveirinha, G. Hanson","doi":"10.1109/METAMATERIALS.2016.7746418","DOIUrl":"https://doi.org/10.1109/METAMATERIALS.2016.7746418","url":null,"abstract":"A thickness dependent permittivity is derived in closed form for bounded wire-medium structures with electrically short wires. The model takes into account spatial dispersion (as an average per length of the wires) and the effect of the boundary. The thickness dependent permittivity is comprised of local bulk and boundary dependent terms, the latter including the effect of spatial nonlocality. The results are obtained for different electrically short wire-medium topologies which possess strong spatial dispersion, demonstrating good agreement with nonlocal homogenization model results.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"5 1","pages":"412-414"},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80075575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}