{"title":"Optical dispersion models for graphene: Integration-free formulations","authors":"L. Prokopeva, Z. Kudyshev, A. Kildishev","doi":"10.1109/METAMATERIALS.2016.7746479","DOIUrl":null,"url":null,"abstract":"Kubo's formalism for graphene surface conductivity is so far the most popular technique to model graphene in optics. However, its original integral form makes it inefficient for numerical evaluation and coupling to electromagnetic solvers since numerical integration shall be employed. In this paper we propose a Kubo-equivalent integration-free formulation for the computationally efficient modeling of the surface conductivity of graphene in time and frequency domains.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"10 1 1","pages":"178-180"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Kubo's formalism for graphene surface conductivity is so far the most popular technique to model graphene in optics. However, its original integral form makes it inefficient for numerical evaluation and coupling to electromagnetic solvers since numerical integration shall be employed. In this paper we propose a Kubo-equivalent integration-free formulation for the computationally efficient modeling of the surface conductivity of graphene in time and frequency domains.