M. Hedayati, A. Yakovlev, M. Silveirinha, G. Hanson
{"title":"A local thickness dependent permittivity model for nonlocal bounded wire medium structures","authors":"M. Hedayati, A. Yakovlev, M. Silveirinha, G. Hanson","doi":"10.1109/METAMATERIALS.2016.7746418","DOIUrl":null,"url":null,"abstract":"A thickness dependent permittivity is derived in closed form for bounded wire-medium structures with electrically short wires. The model takes into account spatial dispersion (as an average per length of the wires) and the effect of the boundary. The thickness dependent permittivity is comprised of local bulk and boundary dependent terms, the latter including the effect of spatial nonlocality. The results are obtained for different electrically short wire-medium topologies which possess strong spatial dispersion, demonstrating good agreement with nonlocal homogenization model results.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"5 1","pages":"412-414"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A thickness dependent permittivity is derived in closed form for bounded wire-medium structures with electrically short wires. The model takes into account spatial dispersion (as an average per length of the wires) and the effect of the boundary. The thickness dependent permittivity is comprised of local bulk and boundary dependent terms, the latter including the effect of spatial nonlocality. The results are obtained for different electrically short wire-medium topologies which possess strong spatial dispersion, demonstrating good agreement with nonlocal homogenization model results.