{"title":"Replacement of a Hot Cell Window at the Hot Fuel Examination Facility","authors":"J. C. Westphal, R. Johansen, J. D. Kelly","doi":"10.1115/ICONE26-82422","DOIUrl":"https://doi.org/10.1115/ICONE26-82422","url":null,"abstract":"During the course of 42 years of irradiated operations in the Hot Fuel Examination Facility at the Idaho National Laboratory (INL), a hot cell window had never been replaced. Recently, slow deterioration of a window seal resulted in mineral oil leaking at a rate of over a liter per month from the window tank unit on through the protective A-slab seal and into the hot cell. A hot cell window consists of both a steel tank unit with five slabs of glass of varying thicknesses with the remaining free space filled with clear mineral oil, and a thinner protective interior A-slab of glass. The repair solution was to remove and replace the A-slab window followed by replacing the window tank unit in two distinct phases.\u0000 The facility original A-slab design was a leak tight barrier and a frame that was “L” shaped with a gasket between the glass and the window flange. Problems with the gasket adhering to the glass and the window flange resulted in pulling the glass from the frame during initial installation activities. Due to the adhesion problem, the gasket was changed to a dust seal during commissioning the facility. Over time, the window tank unit mineral oil leak flowed through this dust seal. Replacing the leaking tank unit necessitated the need for a new leak tight boundary as well as provide a method to drain the accumulated oil behind the A-slab until the tank unit could be replaced. These criteria led to a new A-slab design to be installed.\u0000 Initially, removal and replacement of the A-slab was performed in the main cell (hot side) to reestablish a leak tight barrier. Transfers of the windows and removal of the bolts/reinstallation of new bolts were all performed with specialized equipment designed for remote operations in a hazardous environment using remote manipulators and cranes. Removal and replacement of the window tank unit via the operating corridor (cold side) was scheduled during a facility outage to accommodate availability of contract service personnel who specialize in hot cell windows.\u0000 Due to the complexity of the replacement task, approximately 30% of the personnel on site were involved in the window replacement. Engineering, facility operations and radiation control personnel were primary contributors with electricians, carpenters and the analytical laboratory personnel contributing, as well. The multi-year installation program was safely concluded allowing the facility to resume full operations with the window properly sealed.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90549282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Use of Robust Command Shaping for Vibration Reduction During Remote Handling of Large Components in Tokamak Devices","authors":"S. Grazioso, G. Gironimo","doi":"10.1115/ICONE26-82346","DOIUrl":"https://doi.org/10.1115/ICONE26-82346","url":null,"abstract":"This paper proposes to use robust command shaping methods for reducing the vibrations during remote handling of in-vessel components. The need of deriving efficient vibration control strategies for a safe transportation of large and heavy pay-loads during maintenance procedures in nuclear fusion reactors is the main motivation behind this work. The approach shapes the reference motion command to the component such that the vibratory modes of the system are canceled. We perform the dynamic simulations of a large in-vessel component of the DEMOnstrating fusion power reactor during a remote handling operation. The simulations shows that the method is a possible solution to reduce the vibrations induced by the motion, in both the transient and residual phases. The benefits introduced by command shaping make the method promising towards building control framework for remote handling of in-vessel components in various tokamak devices.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"41 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89239024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Non-Proliferation Viability of Small Modular Reactors","authors":"Z. Koreshi","doi":"10.1115/ICONE26-81651","DOIUrl":"https://doi.org/10.1115/ICONE26-81651","url":null,"abstract":"Small Modular Reactors (SMRs) are economically competitive nuclear power systems aimed to provide sustainable clean safe and reliable nuclear energy free from the risk of fissile material proliferation. They are smaller versions of the present-day large nuclear power reactors with additional design simplifications, improved and reliable passive safety systems incorporating innovative concepts. With the intrinsic advantage of high power density and carbon-free emissions, SMRs and especially their innovative features are the signals for a nuclear comeback, or in Dr Alvin Weinberg’s words “the second nuclear era” in many ways. According to some estimates, there could be up to 96 SMRs by 2030. This paper addresses three vital areas to the understanding of the SMR’s in emerging global environments: (i) design, (ii) production of plutonium during operation, and (iii) their scope of applications. A representative, though very small SMR, Toshiba’s innovative 4S design is used for presenting estimates of plutonium production which are applicable to other SMRs as well. To better understand the viability of SMRs, this work considers the emerging developers, exporters and markets where SMRs can make significant improvements to the overall socio-economic development of societies challenged with formidable barriers.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81153728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transient Reactor Test Facility Restart 23 Years Later","authors":"Bradley K. Heath, Cody C. Race, L. O. Nelson","doi":"10.1115/ICONE26-81833","DOIUrl":"https://doi.org/10.1115/ICONE26-81833","url":null,"abstract":"The Transient Reactor Test (TREAT) Facility, located at the Idaho National Laboratory (INL), is a versatile test facility able to subject experimental specimens to various transient nuclear conditions. TREAT was placed in standby after operating from February 1959 through April 1994, resulting in the loss of nearly all transient testing capability in the United States. Recently, the US Department of Energy (DOE) determined this capability was again needed. After DOE completed National Environmental Policy Act actions in February 2014, INL established the Resumption of Transient Testing Program (RTTP). RTTP was a multi-year effort to restart TREAT to reestablish a domestic transient testing capability. After 23 years of standby operations, the RTTP completed restart activities on August 31, 2017, 13 months ahead of schedule and nearly $20 million under budget. RTTP activities included an Environmental Assessment that resulted in a Finding of “No Significant Impact” associated with restarting TREAT, establishment of a compliant Safety Analysis Report (SAR), refurbishment and/or replacement of key reactor systems and components, key system knowledge recovery, reestablishment of configuration management, procedure updates, personnel training and qualification, and demonstration of operational readiness for reactor operations. Several noteworthy factors that contributed to the restart of TREAT include:\u0000 • Funding to acquire personnel and material resources provided in a timely fashion.\u0000 • Close coordination with the regulator’s (DOE) nuclear safety program during updates, interactive review, and approval of safety documentation provided for timely update of the TREAT SAR and implementing documents.\u0000 • Effective management control enabled by utilization of standard outage management techniques with a focus on age-related degradation and updated standards and requirements.\u0000 • DOE program management ensured efficient implementation of program management tools. These tools focused on clear high-level milestones and spend plans allowing flexibility for the contractor to respond to evolving facility conditions and information in a near-real time manner and with minimal program overhead. This approach enabled efficient execution of work in an environment where determination of required work scope was dependent on performance of inspection, testing, analysis, and evaluation activities.\u0000 • Implementation of the Contractor Assurance System, with frequent internal and externally-led assessments that facilitated process improvements and corrective actions to ensure the operational readiness for required contractor and DOE readiness assessments and safe nuclear operations.\u0000 • The RTTP benefited from archived plant documentation and maintenance performed while the plant was in a safe-standby status.\u0000 • Unique methods of reactivity control allowed for individual and integrated reactor system functional testing, procedure vetting, and personnel training while maintai","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81877035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Virtual Reality Technology in Nuclear Power Plant Control Room Simulator","authors":"Li Xiyun, Wang Xi, Li Chenchen, W. ShaoHua","doi":"10.1115/ICONE26-81163","DOIUrl":"https://doi.org/10.1115/ICONE26-81163","url":null,"abstract":"Main control room simulator is widely used in design verification and operator training for nuclear power plant. The simulator needs to implement the arrangement, environment, human machine interface and function of main control room, which should be the same as much as possible. For designer, each type of reactor needs an individual simulator for design verification. As the number of unit increased, the simulator will consume a lot of space and difficult to reuse for other project. In addition, design verification for control room and I&C system need to start at the early stage of a project and is usually an iterative process with the design work. Build a control room facility for simulator needs a lot of time and is difficult to modify once constructed. To make the simulator more flexible and match the project schedule, virtual reality technology can be used to replace or extend traditional control room simulator with approximately the same arrangement, environment, human machine interface and function. In the full scope engineering simulator of HPR1000 unit, virtual reality control room interface has been designed as an extension of real control room implementation. The designer or operator can control and monitor the power plant in virtual reality environment, which just feels like real control room. It also can be used for other type of reactor by connecting to other simulator server and adding corresponding control room model in virtual reality software. With this preliminary application, control room simulator can be implemented in a short time and flexible for modification, which give designer more time and space for design verification and optimization. Once it applied in training simulator of nuclear power plant in future, it may provide a low cost and flexible option for operator training.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"434 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75792262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification Optimization for Waste Related Buildings and Structures of NPPs","authors":"Zong-han Hu, Yijie Qian, L. Fan","doi":"10.1115/ICONE26-81408","DOIUrl":"https://doi.org/10.1115/ICONE26-81408","url":null,"abstract":"Classification of nuclear power plant waste related buildings and structures is relatively flexible, and research on it is relatively less. In order to better master the classification of waste related buildings and structures and adapt it to the improvement of nuclear power technology and regulations, this paper carries out the function analysis of waste systems and sub-items, and integrates the mature engineering practice experiences and the differences between projects. Finally classification of waste sub-items is analyzed and summarized, such as sectional classification of liquid waste discharge galleries, classification optimization of radioactive waste building. The results of the optimization analysis in this paper can provide sufficient basis and guidance for the classification of nuclear power projects in the future, and improve the economy of nuclear power technology, and shows very good engineering application significance.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91004407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Chappell, G. Jacquart, G. Ferraro, O. Kymäläinen
{"title":"European Utility Requirements for Advanced LWR Issue of EUR Revision E and Ongoing Assessments","authors":"P. Chappell, G. Jacquart, G. Ferraro, O. Kymäläinen","doi":"10.1115/ICONE26-82343","DOIUrl":"https://doi.org/10.1115/ICONE26-82343","url":null,"abstract":"The purpose of the European Utility Requirements (EUR) Organisation is to actively develop and promote harmonised requirements for new mid- and large-size LWR NPPs that are proposed for construction in Europe. The harmonisation which is sought by the fourteen member utilities of the EUR Organisation, aims at delivering the safest and most competitive designs based on common requirements shared across Europe.\u0000 The harmonised requirements are presented in the EUR document. This consists of an extensive set of requirements covering all aspects (safety, performance, competitiveness) and all parts of a NPP (Nuclear and Conventional Islands). It can be used by Utilities (e.g. for assessment of the GEN3 designs proposed by vendors, technical reference for call for bids) and by Vendors (e.g. understanding of customer’s expectation of GEN3 NPPs, facilitating the licensing process).\u0000 The presentation will describe the main outcomes of the last 3 years of EUR Organisation activities (roadmap 2016–2018) and the challenges for the coming near future, in the following three fields.\u0000 First, completion of Revision E of the EUR Document was achieved in December 2016 and issued in July 2017, followed in October 2017 by a training course that was attended by 90 participants. The presentation will describe the most significant updates including revision of the safety requirements to align to the most recent European and International safety standards issued by WENRA and IAEA, lessons learned from the Fukushima accident, including re-evaluated Seismic and External Natural Hazards approach and updated international standards (e.g. for I&C and for European Grid code). Revision E also includes feedback from previous design assessments of NPPs. Future possible development of the EUR Document (and of the assessment process) will be considered within the EUR Organisation ‘Roadmap’.\u0000 Assessment of new designs is the second main technical activity. The assessment of the KHNP EU-APR (European version of APR1400) was completed in 2017 and an assessment of the Russian AEP’s VVER-TOI is planned to complete in 2018. These assessments are against EUR Revision D. The first assessment against Revision E (of the CGN HPR1000 “Hualong” design) is planned between 2018 and 2020. The presentation will recall the EUR design assessment objectives and process and the outcomes and progress of the different assessments.\u0000 The third topic is the interaction between the EUR and other stakeholders, in particular other international organisations (ENISS, WNA/CORDEL, WENRA, EC, IAEA, EPRI/URD) with the aim of promoting Industry Requirements and influencing prospective regulation where appropriate. The presentation will describe how the EUR Organisation is connected to these stakeholders and how it presents Utility requirements to the wider nuclear industry.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86807293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Method of Integrating the RELAP5 to the RINSIM Simulation Platform","authors":"Chao Tan, V. Quiroga, Z. Fu, Zhengquan Xie","doi":"10.1115/ICONE26-82016","DOIUrl":"https://doi.org/10.1115/ICONE26-82016","url":null,"abstract":"This paper introduces a method to control the calculation progress of the RELAP5 codes and integrate them with other codes by interacting boundary data (such as general tables, TDVs and TDJs) at each step.\u0000 This work is basically finished with the support of the RINSIM simulation platform. The paper gives a brief introduction on RINSIM that how it controls the codes progress, sends the codes control commands, shares the values of different codes’ common blocks or modules.\u0000 However, the work can’t be done by just using the RINSIM, it also needs to modify RELAP5 codes. With the codes’ modification of commands responding, data reading/writing interface, data interacting interface, time step control and so on, we can build interface subroutines to integrate codes onto the RINSIM.\u0000 At the end, the paper gives out the result of a transient calculation with an advanced PWR model. Compared to some old integration method, the new method has far more strong stability. And the result shows that the integration progress of the code does not obviously affect the calculation accuracy, but definitely extends the application fields because of the multiple functions supplied by the RINSIM.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"212 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77121036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Ichikawa, H. Kanda, N. Yoshioka, K. Ara, Jun-ichi Saito, K. Nagai
{"title":"Estimation of Mitigation Effects of Sodium Nanofluid for SGTR Accidents in SFR","authors":"K. Ichikawa, H. Kanda, N. Yoshioka, K. Ara, Jun-ichi Saito, K. Nagai","doi":"10.1115/ICONE26-81309","DOIUrl":"https://doi.org/10.1115/ICONE26-81309","url":null,"abstract":"Studies on the suppression of the reactivity of sodium itself have been performed on the basis of the concept of suspended nanoparticles in liquid sodium (sodium nanofluid). According to the theoretical and experimental results of studies for sodium nanofluid, velocity and heat of sodium nanofluid reaction with water (sodium nanofluid/water reaction) are lower than those of the pure sodium/water reaction. The analytical model for the peak temperature of a sodium nanofluid/water reaction jet has been developed by the authors in consideration of these suppression effects. In this paper, the prediction method for mitigation effects on damage of adjacent tubes in steam generator tube rupture (SGTR) accidents is developed by applying this analytical model for the peak temperature of the reaction jet. On the assumption that the sodium nanofluid is used for the secondary coolant of sodium-cooled fast reactor (SFR), mitigation effects under the design basis accident (DBA) condition and the design extension condition (DEC) of SGTR are estimated by using this method. The results indicate a clear possibility to reduce the number of damaged tubes and to suppress the pressure generated in SGTR accidents by using sodium nanofluid as the secondary coolant.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73425112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. Kong, Yuan Fu, Jianyu Zhang, Hui-Ju Lu, Naxiu Wang
{"title":"Upgrade and Shakedown Test of a High Temperature Fluoride Salt Test Loop","authors":"X. Kong, Yuan Fu, Jianyu Zhang, Hui-Ju Lu, Naxiu Wang","doi":"10.1115/ICONE26-81222","DOIUrl":"https://doi.org/10.1115/ICONE26-81222","url":null,"abstract":"A FLiNaK high temperature test loop, which was designed to support the Thorium Molten Salt Reactor (TMSR) program, was constructed in 2012 and is the largest engineering-scale fluoride loop in the world. The loop is built of Hastelloy C276 and is capable of operating at the flow rate up to 25m3/h and at the temperature up to 650°C. It consists of an overhung impeller sump-type centrifugal pump, an electric heater, a heat exchanger, a freeze valve and a mechanical one, a storage tank, etc. Salt purification was conducted in batch mode before it was transferred to and then stored in the storage tank. The facility was upgraded in three ways last year, with aims of testing a 30kW electric heater and supporting the heat transfer experiment in heat exchanger. Firstly, an original 100kW electric heater was replaced with a 335kW one to compensate the overlarge heat loss in the radiator. A pressure transmitter was subsequently installed in the inlet pipe of this updated heater. Finally, a new 30kW electric heater was installed between the pump and radiator, the purpose of which was to verify the core’s convective heat transfer behavior of a simulator design of TMSR. Immediately after these above works, shakedown test of the loop was carried out step by step. At first the storage tank was gradually preheated to 500°C so as to melt the frozen salt. Afterwards, in order to make the operation of transferring salt from storage tank to loop achievable, the loop system was also preheated to a relatively higher temperature 530°C. Since the nickel-base alloy can be severely corroded by the FLiNaK salt once the moisture and oxygen concentration is high, vacuum pumping and argon purging of the entire system were alternatively performed throughout the preheating process, with the effect of controlling them to be lower than 100ppm. Once the salt was transferred into the loop, the pump was immediately put into service. At the very beginning of operation process, it was found that flow rate in the main piping could not be precisely measured by the ultrasonic flow meter. Ten days later, the pump’s dry running gas seal was out of order. As a result, the loop had to be closed down to resolve these issues.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"139 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86263626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}