{"title":"On the Modeling of Nonlinear Wind-Induced Ice-Drift Ocean Currents at the North Pole","authors":"Christian Puntini","doi":"10.1007/s00021-025-00975-7","DOIUrl":"10.1007/s00021-025-00975-7","url":null,"abstract":"<div><p>Starting from the governing equations for geophysical flows, by means of a thin-shell approximation and a tangent plane approximation, we derive the equations describing, at leading order, the nonlinear ice-drift flow for regions centered around the North Pole. An exact solution is derived in the material/Lagrangian formalism, describing a superposition of oscillations, a mean Ekman flow, and a geostrophic current.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-025-00975-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global Existence of a Quasi-Linear Hyperbolic-Parabolic Model for Vasculogenesis","authors":"Qing Chen, Yunshun Wu","doi":"10.1007/s00021-025-00974-8","DOIUrl":"10.1007/s00021-025-00974-8","url":null,"abstract":"<div><p>In this paper, we study the global existence for a quasi-linear hyperbolic-parabolic system modeling vascular networks. Under the assumption that the critical cell density satisfies <span>(P'(bar{rho })=frac{amu }{b}bar{rho })</span>, we establish the global existence for small perturbations and derive the optimal convergent rates for all-order derivatives of the solution.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variational Derivation of the Geophysical Green-Naghdi Shallow-water System","authors":"Yue Chen, Xingxing Liu","doi":"10.1007/s00021-025-00973-9","DOIUrl":"10.1007/s00021-025-00973-9","url":null,"abstract":"<div><p>Under the shallow-water regime and without assuming wave amplitude smallness, we apply the variational approach in the Lagrangian formalism to derive the geophysical Green-Naghdi system. In contrast to the prior derivation in (Fan et al., J. Nonlinear Sci., <b>32</b>(21), 30 (2022)) that imposed a columnar-flow Ansatz, our method adopts the irrotational-flow assumption (which Fan et al., J. Nonlinear Sci., <b>32</b>(21), 30 (2022) does not), thereby generating the depth-independent horizontal velocity at leading order.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global Existence and Vanishing Dispersion Limit of Strong/Classical Solutions to the One-dimensional Compressible Quantum Navier-Stokes Equations with Large Initial Data","authors":"Zhengzheng Chen, Huijiang Zhao","doi":"10.1007/s00021-025-00966-8","DOIUrl":"10.1007/s00021-025-00966-8","url":null,"abstract":"<div><p>We are concerned with the global existence and vanishing dispersion limit of strong/classical solutions to the Cauchy problem of the one-dimensional isentropic compressible quantum Navier-Stokes equations, which consists of the compressible Navier-Stokes equations with a linearly density-dependent viscosity and a nonlinear third-order differential operator known as the quantum Bohm potential. The pressure <span>(p(rho )=rho ^gamma )</span> is considered with <span>(gamma ge 1)</span> being a constant. We focus on the case when the Planck constant <span>(varepsilon )</span> and the viscosity constant <span>(nu )</span> are not equal. Under some suitable assumptions on <span>(varepsilon , nu , gamma )</span>, and the initial data, we proved the global existence and large-time behavior of strong and classical solutions away from vacuum to the compressible quantum Navier-Stokes equations with arbitrarily large initial data. This result extends the previous ones on the construction of global strong large-amplitude solutions of the compressible quantum Navier-Stokes equations to the case <span>(varepsilon ne nu )</span>. Moreover, the vanishing dispersion limit for the classical solutions of the quantum Navier-Stokes equations is also established with certain convergence rates. The proof is based on a new effective velocity which converts the quantum Navier-Stokes equations into a parabolic system, and some elaborate estimates to derive the uniform-in-time positive lower and upper bounds on the specific volume.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamical Stability of Transonic Shock Solutions to Euler-Poisson System in an Annulus","authors":"Qifeng Bai, Yuanyuan Xing","doi":"10.1007/s00021-025-00961-z","DOIUrl":"10.1007/s00021-025-00961-z","url":null,"abstract":"<div><p>This paper concerns the Euler-Poisson system in an annulus with finite radius. The dynamical stability of radially symmetric transonic shock solutions to the Euler-Poisson system is transformed into the global well-posedness of a free boundary problem for a second-order quasilinear hyperbolic equation. One of the crucial ingredients of the analysis is to establish an energy estimate for the associated initial boundary value problem. The steady radial transonic shock solutions are proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144990456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Steady Compressible Navier-Stokes-Fourier System with Slip Boundary Conditions Arising from Kinetic Theory","authors":"Renjun Duan, Junhao Zhang","doi":"10.1007/s00021-025-00972-w","DOIUrl":"10.1007/s00021-025-00972-w","url":null,"abstract":"<div><p>This paper studies the boundary value problem on the steady compressible Navier-Stokes-Fourier system in a channel domain <span>((0,1)times mathbb {T}^2)</span> with a class of generalized slip boundary conditions that were systematically derived from the Boltzmann equation by Coron [9] and later by Aoki et al [1]. We establish the existence and uniqueness of strong solutions in <span>((L_{0}^{2}cap H^{2}(Omega ))times V^{3}(Omega )times H^{3}(Omega ))</span> provided that the wall temperature is near a positive constant. The proof relies on the construction of a new variational formulation for the corresponding linearized problem and employs a fixed point argument. The main difficulty arises from the interplay of velocity and temperature derivatives together with the effect of density dependence on the boundary.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144929355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
šárka Nečasová, María Ángeles Rodríguez-Bellido, Tong Tang
{"title":"Energy Equality for the Compressible Primitive Equations with Vacuum","authors":"šárka Nečasová, María Ángeles Rodríguez-Bellido, Tong Tang","doi":"10.1007/s00021-025-00970-y","DOIUrl":"10.1007/s00021-025-00970-y","url":null,"abstract":"<div><p>The paper deals with the problem of the energy conservation for the weak solutions to the compressible Primitive Equations (CPE) system with degenerate viscosity. The sufficient conditions on the regularity of weak solutions for the energy equality are obtained even for the case when the solutions may include vacuum. In this paper, we show two theorems, the first one gives regularity in the classical isotropic Sobolev and Besov spaces. The second one states regularity in the anisotropic spaces. We obtain new regularity results in the second theorem due to the special structure of CPE system, which are in contrast to compressible Navier-Stokes equations.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144893926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Stationary Solutions to the Nonisentropic Euler–Poisson System in a Perturbed Half Space","authors":"Mingjie Li, Masahiro Suzuki","doi":"10.1007/s00021-025-00971-x","DOIUrl":"10.1007/s00021-025-00971-x","url":null,"abstract":"<div><p>The main concern of this paper is to mathematically investigate the formation of a plasma sheath near the surface of nonplanar walls. We study the existence and asymptotic stability of stationary solutions for the nonisentropic Euler-Poisson equations in a domain of which boundary is drawn by a graph, by employing a space weighted energy method. Moreover, the convergence rate of the solution toward the stationary solution is obtained, provided that the initial perturbation belongs to the weighted Sobolev space. Because the domain is the perturbed half space, we first show the time-global solvability of the nonisentropic Euler-Poisson equations, then construct stationary solutions by using the time-global solutions.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144893925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supersonic Euler Flow Through a Two-dimensional Finite Straight Nozzle","authors":"Qianfeng Li, Ting Xiao, Hairong Yuan","doi":"10.1007/s00021-025-00969-5","DOIUrl":"10.1007/s00021-025-00969-5","url":null,"abstract":"<div><p>This paper studies stationary supersonic compressible Euler flow in a two-dimensional finite straight nozzle. By introducing Glimm functionals with variable weights, we overcome the potential accumulation of successive reflections of weak waves between the two lateral walls, thus establish the existence of a weak entropy solution to a boundary-value problem of the Euler equations in the space of functions with bounded variations by a modified Glimm scheme.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144892443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects","authors":"Tujin Kim","doi":"10.1007/s00021-025-00968-6","DOIUrl":"10.1007/s00021-025-00968-6","url":null,"abstract":"<div><p>We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}