Variational Derivation of the Geophysical Green-Naghdi Shallow-water System

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Yue Chen, Xingxing Liu
{"title":"Variational Derivation of the Geophysical Green-Naghdi Shallow-water System","authors":"Yue Chen,&nbsp;Xingxing Liu","doi":"10.1007/s00021-025-00973-9","DOIUrl":null,"url":null,"abstract":"<div><p>Under the shallow-water regime and without assuming wave amplitude smallness, we apply the variational approach in the Lagrangian formalism to derive the geophysical Green-Naghdi system. In contrast to the prior derivation in (Fan et al., J. Nonlinear Sci., <b>32</b>(21), 30 (2022)) that imposed a columnar-flow Ansatz, our method adopts the irrotational-flow assumption (which Fan et al., J. Nonlinear Sci., <b>32</b>(21), 30 (2022) does not), thereby generating the depth-independent horizontal velocity at leading order.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00973-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Under the shallow-water regime and without assuming wave amplitude smallness, we apply the variational approach in the Lagrangian formalism to derive the geophysical Green-Naghdi system. In contrast to the prior derivation in (Fan et al., J. Nonlinear Sci., 32(21), 30 (2022)) that imposed a columnar-flow Ansatz, our method adopts the irrotational-flow assumption (which Fan et al., J. Nonlinear Sci., 32(21), 30 (2022) does not), thereby generating the depth-independent horizontal velocity at leading order.

地球物理Green-Naghdi浅水系统的变分推导
在浅水状态下,在不假设波幅小的情况下,我们应用拉格朗日形式中的变分方法推导了地球物理Green-Naghdi系统。与[Fan et al., J.非线性科学]中的先验推导相反。, 32(21), 30(2022))施加柱状流Ansatz时,我们的方法采用旋转流假设(Fan et al., J.非线性科学。, 32(21), 30(2022)不),从而在领先顺序产生与深度无关的水平速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信