Singular Weak Solutions Near Boundaries in a Half-space Away from Localized Force for the Stokes and Navier-Stokes Equations

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Tongkeun Chang, Kyungkeun Kang
{"title":"Singular Weak Solutions Near Boundaries in a Half-space Away from Localized Force for the Stokes and Navier-Stokes Equations","authors":"Tongkeun Chang,&nbsp;Kyungkeun Kang","doi":"10.1007/s00021-025-00976-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that there exists a weak solution of the Stokes system with a non-zero external force and no-slip boundary conditions in a half-space of dimension three or higher such that its normal derivatives are unbounded near the boundary. A localized, divergence-free singular force causes, via a non-local effect, singular behavior of normal derivatives of the solution near the boundary, although this boundary is away from the support of the external force. The constructed solution is a weak solution with finite global energy, and it (can be compared to the one in Seregin and S̆verák (Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 41, 200–205, 236; J. Math. Sci. <b>178</b>, no. 3, 353–356 (2011)), which is a form of shear flow with only locally finite energy. A similar construction is performed) for the Navier-Stokes equations as well.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00976-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that there exists a weak solution of the Stokes system with a non-zero external force and no-slip boundary conditions in a half-space of dimension three or higher such that its normal derivatives are unbounded near the boundary. A localized, divergence-free singular force causes, via a non-local effect, singular behavior of normal derivatives of the solution near the boundary, although this boundary is away from the support of the external force. The constructed solution is a weak solution with finite global energy, and it (can be compared to the one in Seregin and S̆verák (Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 41, 200–205, 236; J. Math. Sci. 178, no. 3, 353–356 (2011)), which is a form of shear flow with only locally finite energy. A similar construction is performed) for the Navier-Stokes equations as well.

Abstract Image

Stokes方程和Navier-Stokes方程的半空间离局域力边界附近的奇异弱解
证明了具有非零外力和无滑移边界条件的Stokes系统在三维或三维以上半空间中存在一个弱解,使得其法向导数在边界附近无界。一个局域的、无散度的奇异力通过非局域效应导致解在边界附近的法向导数的奇异行为,尽管这个边界远离外力的支持。构造的解是一个具有有限全局能量的弱解,可以与Seregin和S > verák (Zap)中的解进行比较。Nauchn。扫描电镜。S.-Peterburg。Otdel。斯特克洛夫博士。(POMI) 385 (2010), Kraevye Zadachi matematicheskoi Fiziki i Smezhnye Voprosy Teorii funktsii。41,200 - 205,236;j .数学。科学,178,no。(3,353 - 356(2011)),它是一种局部能量有限的剪切流形式。对Navier-Stokes方程也进行了类似的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信