{"title":"Linearizing the protein-carbon nanotube/graphene amperometric sensors using negative feedback","authors":"M. Sundaramurthy","doi":"10.1109/ISPTS.2012.6260957","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260957","url":null,"abstract":"IEEE Xplore Document Suppressed.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"22 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86043550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Prabhu, C. Mariappan, G. Hareesh, K. I. Gnanasekar, V. Jayaraman, T. Gnanasekaran
{"title":"Selective detection of NH3 by Ag6Mo10O33 thick film by AC impedance spectroscopy","authors":"E. Prabhu, C. Mariappan, G. Hareesh, K. I. Gnanasekar, V. Jayaraman, T. Gnanasekaran","doi":"10.1109/ISPTS.2012.6260920","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260920","url":null,"abstract":"An ammonia sensor based on Ag6Mo10O33 thick film was fabricated and tested. The morphology of the film was characterized by SEM. The electrical capacitance and impedance of the compound were investigated by exposing the film in air, air containing 500 vppm of H2, petroleum gas (PG) and NH3 independently at 350°C using AC impedance spectroscopy. When the film was exposed to air containing ammonia significant increase in capacitance was observed at lower frequencies. The mechanism for the changes in capacitance and impedance as a function of frequency is presented.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"26 1","pages":"193-196"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91273246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solid state sensors for biomedical instruments","authors":"R. A. Mishra, Narendra B. Raut","doi":"10.1109/ISPTS.2012.6260959","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260959","url":null,"abstract":"The output of transducers which are used in physiological measuring is observed to be nonlinear. This nonlinear characteristic of transducers fails to measure the actual value of physiological parameter like temperature, pulse rate, heart beats, etc. the researcher has developed the body temperature measuring transducer using time base oscillating circuit and thermister as temperature sensing element. The time base circuit, phototransistor and LED are used for designing quick recovery heart beat sensor. The design technique of these transducers, their characteristics and comparisons with existing sensors in similar kind of biomedical instruments is discussed in this paper.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"61 1","pages":"326-329"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76525185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madhushree Bute, A. Sheikh, V. Mathe, D. Bodas, R. N. Karekar, S. Gosavi
{"title":"Magnetically controlled flexible valve for flow manipulation in polymer microfluidic devices","authors":"Madhushree Bute, A. Sheikh, V. Mathe, D. Bodas, R. N. Karekar, S. Gosavi","doi":"10.1109/ISPTS.2012.6260969","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260969","url":null,"abstract":"The paper describes design and fabrication of simple, magnetically actuated flexible polymer valve for flow manipulation in the microfluidic network. The valve is made up of a polymer composite. The CoFe2O4 was embedded in PDMS (Polydimethylsiloxane) for making this polymer composite. The composites of different volume percentage loading of CoFe2O4 were used and for each concentration valves of different thicknesses were fabricated, as thin rectangular membranes. This membrane was magnetized in the thickness direction and showed typical permanent magnet behaviour. For actuation of the valve the membrane was deflected by externally applied magnetic force which can close either of the channels. The flow manipulation and proper operation of the valve depends on thickness and percentage loading of magnetic material in membrane as well as dimensions of channel, chamber and membrane with respect to the location of outlet channels. The microfluidic channel was completely close for any fluid flow rate.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"10 1","pages":"357-360"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74579579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Premkumar, S. Shinde, H. H. Kumar, D. K. Kharat
{"title":"Characterization of PZT multi-layer actuator","authors":"S. Premkumar, S. Shinde, H. H. Kumar, D. K. Kharat","doi":"10.1109/ISPTS.2012.6260881","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260881","url":null,"abstract":"Many actuator applications require high resolution, accuracy and fast response time. Piezoelectric multi-layer actuators are used for such applications to manage displacements from nanometer to micrometer range and the response time in microseconds at comparatively low drive voltages. This paper deals with the characterization of lead zirconate titanate (PZT) ceramic multilayer actuators fabricated by tape casting method utilizing impedance analysis and strain measurements. Width mode resonance frequency is predicted using finite element analysis. The electrical impedance spectrums in the frequency range 100 kHz to 250 kHz of PZT multilayers show a small change in resonant behavior. Possible reasons for this change are discussed. Presence of defect in the multi-layer actuator is validated by optical microscopy. The results also show the displacement response at 75V of defect free PZT multilayer actuator.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"43 1","pages":"67-69"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73806563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microcantilever based biosensor with electrical read-out method","authors":"J. Kalambe, R. Patrikar","doi":"10.1109/ISPTS.2012.6260937","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260937","url":null,"abstract":"Recently, an all polymer system based biosensor with integrated optical read-out has been developed. Optical detection techniques are perhaps the most common due to their prevalent use in biology and life sciences. Fluorescence-based detection in Bio-MEMS has been applied to detection of cells within micro-chips, using antibody-based assays. Majority of the detection schemes in microarray and numerous lab-on-a-chip devices and applications utilize optical detection schemes. For size shrinkage, and to reduce the hardware we proposed the new read-out method which utilize the electrical detection method. The paper present design and analysis of microcantilever based biosensor based with electrical read-out method. This method is ideal for the manufacture of low cost disease diagnostic Kits. The sensor structure is designed and simulated using Coventorware software. The corresponding deflection with respect to voltage and stress is analyzed. To solve the fabrication process related issue of the sensor control circuit has been designed and tested using Spartan II-FPGA Kit & PCB. The reliability issues of the sensor are also studied.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"108 1","pages":"249-252"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75926468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new transition metal oxide sensor material for thermistor applications: Manganese-vanadium-oxide","authors":"Girish M. Gouda, C. L. Nagendra","doi":"10.1109/ISPTS.2012.6260898","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260898","url":null,"abstract":"Manganese vanadium oxide thermistor materials both in bulk and thin film form have been prepared and characterized. The bulk materials synthesized by ceramic tape casting and solid state sintering are crystalline in nature while thin films are amorphous even after post deposition annealing at high temperature. The electrical properties' study clearly shows that these materials follow a typical characteristic of negative temperature coefficient (NTC) of resistivity which is attributed to small polaron hopping. The thin film samples have direct optical band gap and shows increased absorption in the infrared region.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"40 1","pages":"125-128"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74626739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New LTCC materials: From fundamental to applied research","authors":"M. Valant","doi":"10.1109/ISPTS.2012.6260950","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260950","url":null,"abstract":"Over the last twenty years, low-temperature co-firing ceramic (LTCC) technology has advanced to such an extent that it now allows the integration of a variety of passive components within the LTCC module. However, to achieve better performance some of them are still mounted as discrete components on the top of the module. An example of this type of component is a capacitor. In principle, no technological or design obstacles exist that would prevent the integration of capacitors into the module. The only problem is a lack of suitable LTCC material that exhibits the proper dielectric characteristics and is compatible with current LTCC materials and technology. Because the NP0-type capacitors represent the largest group of capacitors used with LTCC modules for RF applications we started the development of an NP0-type ceramic layer suitable for direct implementation with existing LTCC production lines. In this talk an example of such development will be presented where the very fundamental research has successfully been upgraded with an applied research and the new functional LTCC layers have been developed. They are characterized by K80, temperature stability, low dielectric loss and cosinterability with commercial low K tapes and silver electrode. The review of all the material properties relevant for the existing LTCC technology shows the possibility of a direct integration of the developed NP0-capacitor layer into the current LTCC modules.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"43 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87565706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P.S Soumya, K. Surabhi, V. Krishnappa, G. Miranda, N. D. Dushyantha
{"title":"Investigation of acoustic structure interaction for flawed structure","authors":"P.S Soumya, K. Surabhi, V. Krishnappa, G. Miranda, N. D. Dushyantha","doi":"10.1109/ISPTS.2012.6260877","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260877","url":null,"abstract":"This paper is an attempt to establish a procedure for 2D quantization of a flaw. In this study, Tin (Sn) a regularly occurring flaw in structural Steel is considered. Using COMSOL 4.2, a 2D transient pressure acoustic model is created, which consists of a 70mm×70mm structural Steel plate with four acoustic transceivers 90 degree apart (each providing 5cycles of 1Mhz sequential sinusoidal excitation) placed along its perfectly reflecting boundary. The signals obtained from the transceivers are post processed using FFT techniques and are further processed for image reconstruction. From the statistical analysis the position of the flaw is determined. The mean deviation from the actual central location of the flaw to the predicted location is (1.136mm, 0.979mm).","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"22 1","pages":"55-58"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89159180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shweta Kirkire, Ashok Kumar, M. Karimi, Amarnath, Hanuman Prasad, Ashish Srivastava, Sanjeev Mehta, Sandip Paul, R. Parmar, D. Samudraiah
{"title":"Development of vertically stacked packaging based miniaturized camera electronics for high resolution imaging payloads","authors":"Shweta Kirkire, Ashok Kumar, M. Karimi, Amarnath, Hanuman Prasad, Ashish Srivastava, Sanjeev Mehta, Sandip Paul, R. Parmar, D. Samudraiah","doi":"10.1109/ISPTS.2012.6260951","DOIUrl":"https://doi.org/10.1109/ISPTS.2012.6260951","url":null,"abstract":"Future Remote Sensing Satellites with high resolution electro-optical payloads require multiple detectors to meet mission goals of multiple spectral bands and large swath. High speed detectors are available with limited pixels array length with multiple video ports. Large number of detectors at the focal plane calls for miniaturized camera electronics. Miniaturization requires usage of low power, low weight components and adaption of new packaging techniques like Multi chip module, System-in Package, Systems-on-chip and wafer level packaging etc. These technologies require multiple dice which are not readily available in required high quality levels. Hence, new packaging approach named as vertically stacked packaging (VSP) is developed in-house and demonstrated. This incorporates vertical stacking of PCBs, inter-board interfaces using copper leads, usage of flexi-rigid boards, single external interface connector and vertical passive component mounting. Here, using VSP technology, reduction is achieved in size by about 91% and weight by about 85% as compared to traditional packaging approaches. This paper mainly discusses the VSP development, optimization and integrated test results with 4K TDI detector.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"20 1","pages":"294-297"},"PeriodicalIF":0.0,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85708434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}