Microcantilever based biosensor with electrical read-out method

J. Kalambe, R. Patrikar
{"title":"Microcantilever based biosensor with electrical read-out method","authors":"J. Kalambe, R. Patrikar","doi":"10.1109/ISPTS.2012.6260937","DOIUrl":null,"url":null,"abstract":"Recently, an all polymer system based biosensor with integrated optical read-out has been developed. Optical detection techniques are perhaps the most common due to their prevalent use in biology and life sciences. Fluorescence-based detection in Bio-MEMS has been applied to detection of cells within micro-chips, using antibody-based assays. Majority of the detection schemes in microarray and numerous lab-on-a-chip devices and applications utilize optical detection schemes. For size shrinkage, and to reduce the hardware we proposed the new read-out method which utilize the electrical detection method. The paper present design and analysis of microcantilever based biosensor based with electrical read-out method. This method is ideal for the manufacture of low cost disease diagnostic Kits. The sensor structure is designed and simulated using Coventorware software. The corresponding deflection with respect to voltage and stress is analyzed. To solve the fabrication process related issue of the sensor control circuit has been designed and tested using Spartan II-FPGA Kit & PCB. The reliability issues of the sensor are also studied.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"108 1","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, an all polymer system based biosensor with integrated optical read-out has been developed. Optical detection techniques are perhaps the most common due to their prevalent use in biology and life sciences. Fluorescence-based detection in Bio-MEMS has been applied to detection of cells within micro-chips, using antibody-based assays. Majority of the detection schemes in microarray and numerous lab-on-a-chip devices and applications utilize optical detection schemes. For size shrinkage, and to reduce the hardware we proposed the new read-out method which utilize the electrical detection method. The paper present design and analysis of microcantilever based biosensor based with electrical read-out method. This method is ideal for the manufacture of low cost disease diagnostic Kits. The sensor structure is designed and simulated using Coventorware software. The corresponding deflection with respect to voltage and stress is analyzed. To solve the fabrication process related issue of the sensor control circuit has been designed and tested using Spartan II-FPGA Kit & PCB. The reliability issues of the sensor are also studied.
基于电读出方法的微悬臂生物传感器
近年来,研制出了一种基于全聚合物体系的集成光学读出生物传感器。光学检测技术可能是最常见的,因为它们在生物学和生命科学中广泛使用。Bio-MEMS中基于荧光的检测已应用于检测微芯片内的细胞,使用基于抗体的分析。微阵列和许多芯片上实验室设备和应用中的大多数检测方案都使用光学检测方案。为了缩小尺寸,减少硬件,我们提出了一种利用电检测法的读出方法。本文介绍了基于电读出法的微悬臂生物传感器的设计与分析。这种方法是制造低成本疾病诊断试剂盒的理想方法。利用Coventorware软件对传感器结构进行了设计和仿真。分析了相应的电压和应力偏转。为了解决传感器制造过程中的相关问题,设计了传感器控制电路,并使用Spartan II-FPGA套件和PCB进行了测试。对传感器的可靠性问题也进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信