2007 Cleantech Conference and Trade Show Cleantech 2007最新文献

筛选
英文 中文
Design and Manufacturing Concepts of Nanoparticle-reinforced Aerospace Materials 纳米颗粒增强航空航天材料的设计与制造概念
2007 Cleantech Conference and Trade Show Cleantech 2007 Pub Date : 2006-05-07 DOI: 10.1201/9780429187469-62
V. Basenuk, M. Kireitseu, G. Tomlinson
{"title":"Design and Manufacturing Concepts of Nanoparticle-reinforced Aerospace Materials","authors":"V. Basenuk, M. Kireitseu, G. Tomlinson","doi":"10.1201/9780429187469-62","DOIUrl":"https://doi.org/10.1201/9780429187469-62","url":null,"abstract":"Nanoparticle-based vibration damping shows the effect that molecule-level mechanism can have on the damping and that nanoparticles/fibres/tubes-reinforced composite materials can provide enhanced strength and vibration damping properties over the broader operational conditions. It is particularly worth noting that carbon nanotubes can act as a simple nanoscale spring. The mechanisms involved in such materials need to be understood and the relevance to damping identified. The focus in this paper is directed toward the development of the next generation of vibration damping systems, providing a road map to manufacturing technology and design solutions. The research work concentrates on an investigation related to nanoparticlereinforced materials extensive dynamic characterization and modelling of their fundamental phenomena that control relationships between design and damping properties across the length scales.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80179761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Systematic Approach on Modeling and Identification for Nanobattery Prototyping 纳米电池原型建模与辨识的系统方法
2007 Cleantech Conference and Trade Show Cleantech 2007 Pub Date : 2006-05-07 DOI: 10.1201/9780429187469-77
P. Bhattacharya, Z. Ye, E. Walker, F. Lacy, Madhusmita Banerjee
{"title":"Systematic Approach on Modeling and Identification for Nanobattery Prototyping","authors":"P. Bhattacharya, Z. Ye, E. Walker, F. Lacy, Madhusmita Banerjee","doi":"10.1201/9780429187469-77","DOIUrl":"https://doi.org/10.1201/9780429187469-77","url":null,"abstract":"This article is concerned with the systematic design of nanobattery prototyping. Miniaturization of power sources is a challenging area of nanotechnology research. There are four major parts in miniaturized Li-Ion nanobattery: anode, cathode, electrode and separator. Correspondingly, some appropriate material must be distinguished. The multiwalled carbon nanotube array electrode is used as anode, which exhibits high current density. LiMn2O4 spinel oxide is used as the cathode. Nanoporous dielectric membrane is selected for mixture storage of gel electrolyte. Ni is chosen as a suitable current collector. The separator and electrolyte container accounts for the reduction of dendrites and compatibility increment of electrode-electrolyte. According to nanobattery physical mechanism, mathematical model has been identified. At last, some numerical simulations of nanobattery characteristics have been conducted.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88892306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Destruction of Organophosphate Agents by Recyclable Catalytic Magnetic Nanoparticles 可回收磁性纳米催化剂对有机磷剂的破坏作用
2007 Cleantech Conference and Trade Show Cleantech 2007 Pub Date : 2006-05-07 DOI: 10.1201/9780429187469-69
L. Bromberg, T. Hatton
{"title":"Destruction of Organophosphate Agents by Recyclable Catalytic Magnetic Nanoparticles","authors":"L. Bromberg, T. Hatton","doi":"10.1201/9780429187469-69","DOIUrl":"https://doi.org/10.1201/9780429187469-69","url":null,"abstract":"Organophosphorus (OP) pesticides and warfare agents are catalytically hydrolyzed in aqueous media by suspensions of magnetite (Fe3O4) nanoparticles modified with poly(1-vinylimidazole-co-acrolein oxime-co-acrylic acid). The oxime- and imidazole-modified magnetite particle serves as a nano-sized particulate carrier with nucleophilic groups immobilized on its surface. The oximemodified magnetite nanoparticles are colloidally stable within a wide pH range and are readily recovered for reuse from the aqueous milieu by high-gradient magnetic separation methods with no loss of catalytic activity.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74901198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured perovskite-based oxidation catalysts for improved environmental emission control 纳米结构钙钛矿基氧化催化剂改善环境排放控制
2007 Cleantech Conference and Trade Show Cleantech 2007 Pub Date : 2006-05-07 DOI: 10.1201/9780429187469-71
H. Alamdari, M. Bassir, P. Seegopaul, A. Neste
{"title":"Nanostructured perovskite-based oxidation catalysts for improved environmental emission control","authors":"H. Alamdari, M. Bassir, P. Seegopaul, A. Neste","doi":"10.1201/9780429187469-71","DOIUrl":"https://doi.org/10.1201/9780429187469-71","url":null,"abstract":"Global concerns over environmental pollution have resulted in increasingly stringent regulations to control the levels of critical air pollutants, such as, carbon monoxide (CO), nitrogen oxide species (NOx), volatile organic compounds (VOC) and particulate matter (PM). These pollutants are removed by heterogeneous catalysis and the platinum group metals (PGM) remain the catalysts of choice but this situation is now complicated by the requirement for higher performance at lower costs while the PGM are experiencing escalating prices. A solution to this problem is the use of nanostructured perovskite-based Nanoxite™ catalysts engineered with unique structural features and high surface areas that enable higher catalytic efficiency at lower temperatures without sacrificing durability performance. In fact, Nanoxite is a “catalytic washcoat” product in that it simultaneously functions as the emission control catalyst while providing the bulk of the washcoat. As a result, both the PGM level and the amount of conventional washcoat materials are simultaneously reduced. Each powder particle possesses a hierarchical structure where larger micron sized particles hold the < 40 nanometer size perovskite grains. This desired arrangement facilitates easy powder handling and eliminates reactivity typically associated with discrete Nanograin materials. These perovskite-based catalyst formulations are applicable to both diesel engine and stationary emission control with respect to CO / VOC oxidation and the management of NOx and PM.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73383048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Assembled Soft Nanomaterials from Renewable Resources 可再生资源自组装软纳米材料
2007 Cleantech Conference and Trade Show Cleantech 2007 Pub Date : 2006-05-07 DOI: 10.1201/9780429187469-45
G. John
{"title":"Self-Assembled Soft Nanomaterials from Renewable Resources","authors":"G. John","doi":"10.1201/9780429187469-45","DOIUrl":"https://doi.org/10.1201/9780429187469-45","url":null,"abstract":"A set of amphiphilic glycolipids were synthesized from cardanol (a by-product of cashew industry) and diaminopyridine (DAP). These amphiphiles encompass selfassembling units such as long hydrophobic saturated or unsaturated chain, open or closed sugar as headgroup and aromatic (phenyl or DAP) as linker. Amphiphiles from both series (cardanyl and DAP) exhibited excellent self-assembling properties to produce various lipid based materials ranging from structurally unordered fibers to highly uniform nanotubes. Their self-assembling properties were investigated by various techniques including EF-TEM, SEM, XRD and DSC. The nanotubes are comprised of bilayer structure with interdigitated alkyl chains associated through hydrophobic","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78411268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Functionalized Nanoporous Ceramic Sorbents for Removal of Mercury And Other Contaminants 功能化纳米多孔陶瓷吸附剂去除汞和其他污染物
2007 Cleantech Conference and Trade Show Cleantech 2007 Pub Date : 2006-05-07 DOI: 10.1201/9780429187469-67
G. Fryxell, S. Mattigod, K. Parker, R. Skaggs
{"title":"Functionalized Nanoporous Ceramic Sorbents for Removal of Mercury And Other Contaminants","authors":"G. Fryxell, S. Mattigod, K. Parker, R. Skaggs","doi":"10.1201/9780429187469-67","DOIUrl":"https://doi.org/10.1201/9780429187469-67","url":null,"abstract":"A new class of high-performance nanoporous sorbents has been developed for heavy metal removal that overcomes the deficiencies of existing technologies. These novel materials are created from a combination of synthetic nanoporous ceramic substrates that have specifically tailored pore sizes (2 to 10 nm) and very high surface areas (~1000 m 2 /g) with self-assembled monolayers of wellordered functional groups that have high affinity and specificity for specific types of free or complex cations or anions. These sorbents known as SAMMS™ (SelfAssembled Monolayers on Mesoporous Silica) are hybrids of two frontiers in materials science: molecular selfassembly techniques and nanoporous materials. One form of SAMMS™ containing monolayers of mercaptopropyltrismethoxy silane has shown exceptional sorptive properties for mercury and other soft cations such as silver, cadmium, and lead. Another form of SAMMS™ with a functional monolayer consisting of ethylenediamine-Cu(II) complex (Cu-EDA) specifically adsorbs tetrahedral oxyanions such as arsenate, selenate, molybdate, chromate and pertechnetate even in the presence of high concentrations of sulfate. Separation of actinides can be addressed by SAMMS™ material synthesized with a set of monolayer functionalities consisting of hydroxypyridinones, acetamide and propinamide phosphonates. These nanoporous sorbents offer a better choice for efficient and cost-effective removal contaminants from diverse waste streams.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83210630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信