材料工程研究(英文)Pub Date : 2019-05-30DOI: 10.25082/MER.2019.02.003
Girija Suresh, H. Kumar
{"title":"Monitoring localized corrosion of Inconel 82 weld overlay on 304L SS weld by electrochemical noise","authors":"Girija Suresh, H. Kumar","doi":"10.25082/MER.2019.02.003","DOIUrl":"https://doi.org/10.25082/MER.2019.02.003","url":null,"abstract":"The manuscript presents the results from the electrochemical noise (EN) monitoring of Inconel 82 weld overlay on Type 304L stainless steel (SS) weld in 0.01M FeCl3. The microstructure of the weld overlay obtained from optical and scanning electron microscopy (SEM) showed an austenite structure, containing equiaxed dendrites and secondary phases at the interdendritic region. Energy dispersive spectroscopy (EDS) attached to SEM revealed the secondary phases to be Nb rich Laves phase. The electrochemical potential noise was monitored using a three identical electrode configuration. The acquired signals were detrended, and wavelet analysis was employed to encode useful information from the noise transients. Visual examination of the potential noise-time record contained distinct high amplitude transients typical of localized corrosion attack. The energy distribution plots (EDP) of the potential noise derived from wavelet analysis depicted maximum relative energy on D6-D8 crystals, which represent large time scale events such as those occurring from localized attacks. Also, repassivation events too could be divulged from the potential EDP. The micrographs of the post electrochemical noise experimented specimens revealed the occurrence of localized attacks along the interdendritic region and none inside the dendritic cores. The presence of secondary phases along the interdendritic regions was found to be detrimental in chloride medium, imparting inferior localized corrosion resistance to the weld overlay.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47818849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-05-21DOI: 10.25082/MER.2019.02.002
M. Farahmandjou, N. Golabiyan
{"title":"Synthesis and characterisation of Al2O3 nanoparticles as catalyst prepared by polymer co-precipitation method","authors":"M. Farahmandjou, N. Golabiyan","doi":"10.25082/MER.2019.02.002","DOIUrl":"https://doi.org/10.25082/MER.2019.02.002","url":null,"abstract":"Alumina (Al2O3) is a very interesting material with broad applicability as a support for various catalytically active phases and ceramic materials. Aluminium oxide (Al2O3) Nanoparticles were synthesized by aluminium chloride hexahydrate as precursor and polyvinylpyrrolydon (PVP) as surfactant and polymer agent. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern exhibited gamma-Al2O3 to alpha- Al2O3 structural phase transition in the samples. The mean diameter of sphere-like as-prepared nanoparticles was around 26 nm and mean diameter of annealed sample was around 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. The effect of PVP surfactant on the morphology of the alumina nanoparticles has been investigated. EDS showed peaks of aluminium and oxygen in prepared Al2O3.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47511925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-04-22DOI: 10.25082/MER.2019.02.001
N. Ishchenko, I. Petelguzov, O. Slabospitska
{"title":"Investigation of the interaction of material of fuel cladding for WWER-1000 reactor with steam at a temperature of accident overheatings","authors":"N. Ishchenko, I. Petelguzov, O. Slabospitska","doi":"10.25082/MER.2019.02.001","DOIUrl":"https://doi.org/10.25082/MER.2019.02.001","url":null,"abstract":"The subject of this study is the oxidation of fuel rod cladding made of material Zr1Nb(0.1% O) in steam at temperatures in the range of 660°C to 1200°C with a surface in the initial state (after manufacturing - grinding) and after additional chemical etching. The changes in the microstructure of tubes due to the interaction with steam were investigated. A comparison was made between the oxidation rate of this material (weight gain) and the data on the oxidation of other alloys for nuclear power plants. The oxidation rate of Zr1Nb(0.1% O) is close to the oxidation rate of other zirconium alloys. It is shown that after chemical treatment of the surface of the samples there is a more even growth of oxide films, and they have a smaller thickness for the same time of exposure than after mechanical grinding. Surface treatment before oxidation also affects the change of microstructure of samples when heated to high temperatures.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46277127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-04-18DOI: 10.25082/MER.2019.01.005
R. Turner
{"title":"A study on the deformation and crushing of copper tubing: experiments, theory & FE modelling","authors":"R. Turner","doi":"10.25082/MER.2019.01.005","DOIUrl":"https://doi.org/10.25082/MER.2019.01.005","url":null,"abstract":"A series of 250 mm lengths of copper tubing, of 15 mm outer diameter and 0.7 mm wall thickness, were studied to determine their deformation if they were pinched or crushed between rigid objects applying a given force, to replicate potential accidental damage suffered by the copper pipes during service. A finite element modelling framework was developed to simulate the crushing of a copper pipe the same dimensions as that used for experiments, and the experimental data allowed for a validation of the pipe crushing at approximately room temperature, to consider copper pipe carrying cold water. The FE modelling activity was then extended to consider the deformation of copper pipe at 80∘C, carrying heated water at this temperature. The modelling agreed reasonably well with experiment, and applied forces of 1.5 kN began to deform the cold pipe, with the pipe collapsing on itself at loads of 6 kN. The heated pipe began to deform at roughly 1.25 kN. Lastly, theoretical flow calculations were performed to determine the Reynolds value, the flow velocity and the pressure loss and head loss per unit length of the deformed pipes, according to classical pipe flow calculation methods.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43420972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-04-11DOI: 10.25082/MER.2019.01.004
M. Farahmandjou
{"title":"One-step synthesis of TiO2 nanoparticles using simple chemical technique","authors":"M. Farahmandjou","doi":"10.25082/MER.2019.01.004","DOIUrl":"https://doi.org/10.25082/MER.2019.01.004","url":null,"abstract":"Titanium dioxide nanoparticles (TiO2) have been extensively investigated because of its high chemical sustainability, optic properties, and adaptation to the environment. These studies include applications in heterogeneous catalysts, solar cells, coating technology, and electrical devices. TiO2 particles in the nanometer scale can remove limitations, such as the absorbance of organic materials, because of a high surface area to volume ratio. Titanium dioxide nanoparticles, were synthesized using a simple wet chemical method. Their physico-chemical properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The TEM results showed that the mean size of as-synthesized TiO2 was 5 nm with high crystalline anatase phase. The SEM observations revealed that the size of nanoparticles increased with annealing temperature and the morphology of the particles changed to the spherical shape. The crystal structure of the nanoparticles before and after annealing was done by XRD analysis. The rutile phase was formed after heat treatment at 600oC for 3 hours.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49032817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-01-28DOI: 10.25082/MER.2019.01.002
R. M. Guseynov, R. A. Radzhabov, E. A. Medzhidova
{"title":"Behaviour of the electrochemical intrgrator on the basis of solid electrolyte in galvanoharmonic charging mode","authors":"R. M. Guseynov, R. A. Radzhabov, E. A. Medzhidova","doi":"10.25082/MER.2019.01.002","DOIUrl":"https://doi.org/10.25082/MER.2019.01.002","url":null,"abstract":"Behaviour of the Electrochemical integrator on the basis of Solid Electrolyte is studied in the galvanoharmonic charging mode. The possibility of application of simpler and more graphic calculation technigue and separation of impedance of electrochemical systems into active and reactive components is shown. The plotting of the dependences of the active and reactive impedance components on ac freguency was used to find the values of parameters of the studied equivalent electric cuircuits.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43014422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-01-17DOI: 10.25082/MER.2019.01.001
R. M. Guseynov, R. A. Radzhabov
{"title":"Frumkin-melik-gaykazan model in the otentiodynamic and galvanodynamic regimes of funcioning","authors":"R. M. Guseynov, R. A. Radzhabov","doi":"10.25082/MER.2019.01.001","DOIUrl":"https://doi.org/10.25082/MER.2019.01.001","url":null,"abstract":"Aim The main purpose of this article is to study the behavior of a metallic electrode in the electrolyte which contains a surface-active substance with the property of adsorbtion-desorbtion, in the galvanodynamic and potentiodynamic rejimes. Method The study of the electrochemical behavior of a metallic electrode is carried out by operational impedance method, based on the Ohm’s low on the interaction between the Laplace-transformed expression of current, voltage and complex resistance (impedance) . Results It is obtained the analytical expression of interface voltage –time dependence in a solution which contains a surface-active indifferent substance with the property of adsorbtion-desorbtion; also it is obtained the analytical expression of current density-time dependence which is passing through electrochemical cell in potentiodynamic regime of functioning of the Frumkin-Melik-Gaykazan model. Conclusion It is established that the relation between the interface metallic electrode – indifferent electrolyte with property of adsorbtion-desorbtion voltage in the galvanodynamic rejime has the character of second order parabola; the relation between current density which is passing through a cell and time in potentiodynamic rejime of functioning in the Frumkin – Melik – Gaykazan model has exponential character.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48585571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2019-01-01DOI: 10.25082/mer.2020.01.001
Kamrun N. Keya, Nasrin A. Kona, M. Razzak, R. Khan
{"title":"The Comparative studies of mechanical and interfacial properties between jute and E-Glass fiber-reinforced unsaturated polyester resin based composites","authors":"Kamrun N. Keya, Nasrin A. Kona, M. Razzak, R. Khan","doi":"10.25082/mer.2020.01.001","DOIUrl":"https://doi.org/10.25082/mer.2020.01.001","url":null,"abstract":"Jute fiber (hessian cloth)-reinforced unsaturated polyester matrix composites (50 wt% fiber) were fabricated by hand lay-up technique. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM), elongation at break (Eb%), and impact strength (IS) of the composites were found to be 42 MPa, 2.7 GPa, 36 MPa, 2.1 GPa, 3%, and 21 kJ/m2, respectively. On the other hand, TS, TM, BS, BM, and Eb% of E-glass mat reinforced unsaturated polyester resin (UPR) composite were found to be 70 MPa, 3.8 GPa, 80 MPa, 2.5 GPa, and 5%, respectively. Then E-glass/UPR based composites (50 wt% fiber) were fabricated and the mechanical properties were compared with those of the Jute/UPR based composites. It was observed that E-glass fiber-based composites showed almost double mechanical properties as compared to jute composites. The interfacial shear strength of the jute and E-glass fiber-based systems was investigated and found to be 21 kJ/m2 and 21.56 kJ/m2, respectively, measured using the single-fiber fragmentation test. After flexural testing, fracture sides of both types of the composites were studied by scanning electron microscope (SEM) and the results showed that poor fiber-matrix adhesion for Jute/UPR based composites when it compared to that of the E-glass fiber composites. However, it was found that the E-glass fiber based composite has better strength as compared to jute fiber composite.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
材料工程研究(英文)Pub Date : 2018-04-27DOI: 10.25082/MER.2018.01.001
Saleem Yousuf, D. Gupta
{"title":"Chemical Stability and Thermodynamics of New Zr₂-based Heusler Alloys","authors":"Saleem Yousuf, D. Gupta","doi":"10.25082/MER.2018.01.001","DOIUrl":"https://doi.org/10.25082/MER.2018.01.001","url":null,"abstract":"We present the spin polarized calculations on the new Zr2NiX (X = Al, Ga) alloys. Band structure analysis present them as half-metallic compounds with integral spin magnetic moment of 3 mB following the general Slater-Pauling rule. Thermal effects on some macroscopic properties using quasi-harmonic Debye model which considers the phononic effects, the effects of pressure and temperature are taken into account. The variations of the thermal expansion coefficient, Debye temperature, Gruneisen parameter γ and heat capacity for the compounds have been investigated for the first time. These thermodynamic properties may prove as a reference for their synthesis.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46405486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}