Zhan Hua Li, Jia Xing He, Jia Yu Li, Ke Xu, Xiao Hu Lv, Ming-de Li, Chao Ping Liu, Kin Man Yu, Jian Dong Ye
{"title":"Native Defect-Dependent Ultrafast Carrier Dynamics in p-Type Dopable Wide-Bandgap NiO","authors":"Zhan Hua Li, Jia Xing He, Jia Yu Li, Ke Xu, Xiao Hu Lv, Ming-de Li, Chao Ping Liu, Kin Man Yu, Jian Dong Ye","doi":"10.1021/acs.jpclett.4c02959","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02959","url":null,"abstract":"NiO is a wide-bandgap p-type metal oxide that has extensive applications in optoelectronics and photocatalysts. Understanding the carrier dynamics in p-type NiO is pivotal for optimizing device performance, yet they remain largely unexplored. In this study, we employed femtosecond transient absorption spectroscopy to delve into the dynamics of photogenerated carriers in NiO films containing distinct prominent native defects: undoped NiO with oxygen vacancies (<i>V</i><sub>O</sub>) and O-rich NiO (denoted as NiO<sub>1+δ</sub>) with nickel vacancies (<i>V</i><sub>Ni</sub>). Our findings unveil significant disparities between the two types of NiO thin films. The undoped NiO film exhibits a broad photoinduced absorption signal spanning the spectral range of 360–600 nm, whereas a photobleaching signal within the spectral range of 400–600 nm is observed in the O-rich NiO<sub>1+δ</sub> film, which can be attributed to their unique native defects. We ascertain that the fast formation of small electron polarons (SEPs) occurs within a delay time of approximately 200 fs. Subsequently, the photogenerated carriers undergo rapid trapping by localized states (e.g., grain boundary states) in undoped NiO and O-rich NiO<sub>1+δ</sub> within time scales of around 1–8 and 5–7 ps, respectively, followed by relatively slow trapping and recombination processes via native defects <i>V</i><sub>O</sub> and <i>V</i><sub>Ni</sub> within time scales of approximately 200 ps and ∼2 ns, respectively. These findings illuminate the fundamental processes governing carrier dynamics in NiO thin films with different native defects, offering crucial insights for the advancement of NiO-based devices.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"24 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals","authors":"Lin Feng, I-Hsuan Yeh, Pavle V. Radovanovic","doi":"10.1021/acs.jpclett.4c02966","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02966","url":null,"abstract":"Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin–orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered Cs<sub>3</sub>Bi<sub>2</sub>X<sub>9</sub> (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy. Our results indicate that the excitonic spectra are predominantly composed of direct and indirect band gap transitions and that the Zeeman splitting energy of the direct exciton increases from 0.50 to 0.63 meV at 7 T by substituting Br for Cl. Comparison with analogous results for Cs<sub>2</sub>AgBiCl<sub>6</sub> nanocrystals, obtained by cation substitution, suggests an important effect of charge distribution within electronic bands on the excitonic Zeeman splitting. This work demonstrates that the magneto-optical properties of these materials can be effectively manipulated via chemical composition, suggesting promising applications in photonics, spintronics, and optoelectronics.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"1 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Gao, Xiaowei Mu, Jianming Liu, Jianyong Feng, Huiting Huang, Zhigang Zou, Zhaosheng Li
{"title":"Optimizing Formation Energy Barrier of NiCo-LDH Cocatalyst to Enhance Photoelectrochemical Benzyl Alcohol Oxidation","authors":"Bin Gao, Xiaowei Mu, Jianming Liu, Jianyong Feng, Huiting Huang, Zhigang Zou, Zhaosheng Li","doi":"10.1021/acs.jpclett.4c03065","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03065","url":null,"abstract":"Using organic oxidation reactions to replace the oxygen evolution reaction is a promising approach for producing high-value organic products and hydrogen. Here, we report a photoelectrochemical benzyl alcohol oxidation system based on an α-Fe<sub>2</sub>O<sub>3</sub> photoanode coated with a NiCo-layered double hydroxide (NiCo-LDH) cocatalyst. By adjustment of the relative content of Ni and Co in the NiCo-LDH, the optimized photoanode achieved a benzyl alcohol conversion efficiency of 99.1% and benzoic acid selectivity of 90.9%. Experimental studies revealed that the benzyl alcohol oxidation reaction proceeds via an indirect catalytic mechanism involving high-valence species of the NiCo-LDH cocatalyst. Co in NiCo-LDH reduced the formation energy barrier and oxidative capability of the high-valence species, thereby influencing the performance of the photoanode. This work provides insights into the crucial role of cocatalyst composition in organic reaction oxidation and contributes to developing various photoelectrochemical organic oxidation systems.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"88 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Shakiba, Adam B. Philips, Jochen Autschbach, Alexey V. Akimov
{"title":"Machine Learning Mapping Approach for Computing Spin Relaxation Dynamics","authors":"Mohammad Shakiba, Adam B. Philips, Jochen Autschbach, Alexey V. Akimov","doi":"10.1021/acs.jpclett.4c03293","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03293","url":null,"abstract":"In this work, a machine learning mapping approach for predicting the properties of atomistic systems is reported. Within this approach, the atomic orbital overlap, density, or Kohn-Sham (KS) Fock matrix elements obtained at a low level of theory such as extended tight-binding have been used as input features to predict the electric field gradient (EFG) tensors at a higher level of theory such as those obtained with hybrid functionals. It is shown that the machine-learning-predicted EFG tensors can be used to compute spin relaxation rates of several ions in aqueous solutions. From only a fraction of data used in direct calculation, one can predict the quadrupolar isotropic spin relaxation rates with good accuracy, achieving relative errors between about 2–8% for different ions.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"268 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Conductive Dynamics of Sb2(S,Se)3-Based Memristors for Non-Volatile Memory and Neuromorphic Applications","authors":"Yuanjie Yang, Yuanhui Yang, Lei Zheng, Yuchan Wang, Fang Wang, Xiaolei Li, Liangliang Feng, Hongling Guo, Shifu Xiong, Kailiang Zhang","doi":"10.1021/acs.jpclett.4c03367","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03367","url":null,"abstract":"Advancing the development of novel materials or architectures for random access memories, coupled with an in-depth understanding of their intrinsic conduction mechanisms, holds the potential to transcend the conventional von Neumann bottleneck. In this work, a novel memristor based on the Sb<sub>2</sub>(S,Se)<sub>3</sub> material with an alloy of S and Se was fabricated. A systematic investigation of the correlation between the Se/(S + Se) ratio and memristive performance revealed that Ag/Sb<sub>2</sub>(S,Se)<sub>3</sub>/FTO memristive behavior is uniquely associated with the formation and disruption of anion vacancies and silver filaments. The resultant Ag/Sb<sub>2</sub>(S,Se)<sub>3</sub>/FTO memristor devices demonstrated good resistive switching, with durability surpassing 3 × 10<sup>4</sup> cycles, showcasing multilevel conductivity states. Furthermore, these devices successfully emulated the synaptic functionality. This research has established the foundation for the intrinsic conduction mechanisms of antimony chalcogenide memristor artificial synapses.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"79 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aggregation-Induced Emission Carbon Dot-Based Multicolor Circularly Polarized Afterglow with a High Luminescence Dissymmetry Factor","authors":"Rui Guo, Zijun Ling, Boyan Zheng, Xiaofeng Sun, Zaiwu Yuan, Hongguang Li","doi":"10.1021/acs.jpclett.4c03058","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03058","url":null,"abstract":"Carbon dots (CDs) with circularly polarized afterglow (CPA) materials have drawn increasing attention as cutting-edge research in the field of chiral luminescence owing to their promising applications in various fields. However, due to the weak optical activity of chiral CDs and the limited afterglow color of phosphorescent CDs, it is still a formidable challenge to construct multicolor CD-based CPA materials with a high luminescence dissymmetry factor (<i>g</i><sub>lum</sub>). Herein, positively charged aggregation-induced emission (AIE) CDs were prepared using dithiosalicylic acid and ionic liquid as precursors. Encapsulating the positively charged AIE CDs in the chiral nematic structure of negatively charged cellulose nanocrystal (CNC) films enabled the production of a surprising warm white CPA with <i>g</i><sub>lum</sub> up to −0.16. To further expand the color of afterglow, the phosphorescence resonance energy transfer between CDs and commercial fluorescent dyes was constructed in CNC films. Finally, the potential applications in advanced dynamic information encryption were explored by virtue of the different afterglow lifetimes.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"55 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artur Davletshin, Elena A. Korznikova, Andrey A. Kistanov
{"title":"Machine Learning Prediction of the Corrosion Rate of Zinc-Based Alloys Containing Copper, Lithium, Magnesium, and Silver","authors":"Artur Davletshin, Elena A. Korznikova, Andrey A. Kistanov","doi":"10.1021/acs.jpclett.4c03357","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03357","url":null,"abstract":"Implementation of machine learning (ML) techniques in materials science often requires large data sets. However, a proper choice of features and regression methods allows the construction of accurate ML models able to work with a relatively small data set. In this work, an extensive, although still limited, experimental data set of corrosion-related properties of Zn-based alloys used in biomedicine was created. On the basis of this data set, a robust and accurate model was built to predict the corrosion behavior of Zn-based alloys. This work highlights the effectiveness of ML methods for assessing the corrosion behavior of Zn-based alloys, which can facilitate their application in bioimplants.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"90 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanchari Debnath, Jungjin Park, Vithobha Hugar, Ram Kumar Canjeevaram Balasubramanyam, Juwon Oh, Woojae Kim, Satish Patil
{"title":"Stabilizing Diketopyrrolopyrrole Radical Cations Through Carbazoles: Substitution Pattern vs Spin Delocalization","authors":"Sanchari Debnath, Jungjin Park, Vithobha Hugar, Ram Kumar Canjeevaram Balasubramanyam, Juwon Oh, Woojae Kim, Satish Patil","doi":"10.1021/acs.jpclett.4c03335","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03335","url":null,"abstract":"The synthesis of organic radicals continues to garner significant interest due to their fascinating optical, electronic, and magnetic properties. Moreover, the growing demand for chemically stable organic radicals is driven by the rapid expansion of the market for electronic devices utilizing organic semiconductors. In this context, the development of multifaceted approaches for the design of stable organic radicals is of great importance. In this work, we introduce a strategy for generating stable radical cations of diketopyrrolopyrroles (DPP) by modulating the substitution pattern of the electron-donating carbazole substituent. Using electronic, spin resonance, and vibrational spectroscopies, supported by density functional theory, we carefully investigated the electronic structures and chemical stability of the DPP radical cations. Our findings demonstrate that the position of electron-rich heteroatoms and the presence of Clar’s aromatic sextets in donor moieties play a pivotal role in enhancing the chemical stability of DPP radical cations.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"496 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Tunneling: History and Mystery of Large Amplitude Motions over a Century","authors":"Ha Vinh Lam Nguyen","doi":"10.1021/acs.jpclett.4c02914","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02914","url":null,"abstract":"Large amplitude motions (LAMs), most notably represented by proton tunneling, mark a significant departure from small amplitude vibrations where protons merely oscillate around their equilibrium positions. These substantial displacements require tunneling through potential energy barriers, leading to splittings in, e.g., rotational spectra. Since Hund’s pioneering work in 1927, proton tunneling has offered a unique glimpse into the internal dynamics of gas-phase molecules, with microwave spectroscopy being the key technique for such investigations. The ubiquous LAM type is methyl internal rotation, characterized by 3-fold potentials arising from the interaction between methyl rotors and their molecular frame, with the barrier hindering methyl torsion and the orientation of the torsional axis being defining features. Investigating methyl internal rotations plays a key role in fields ranging from molecular physics, where the methyl rotor serves as a sensitive probe for molecular structures, to atmospheric chemistry and astrophysics, where methyl-containing species have been detected in the Earth’s atmosphere and interstellar environments and even discussed as potential probes for effects beyond the standard model of physics. Despite nearly a century of study, modeling methyl internal rotations with appropriate model Hamiltonians and fully understanding the origins of these motions, particularly the factors that influence torsional barriers, remain partially unresolved, reflecting the enduring mystery of quantum tunneling. This Perspective reviews the history of LAMs, highlights advances in decoding their complex spectra, and explores future research directions aimed at uncovering the remaining mysteries of these fascinating motions.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"13 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kacie J. Nelson, Nathanael P. Kazmierczak, David A. Cagan, Alec H. Follmer, Thais R. Scott, Sumana L. Raj, Douglas Garratt, Natalia Powers-Riggs, Kelly J. Gaffney, Ryan G. Hadt, Amy A. Cordones
{"title":"Multiconfigurational Electronic Structure of Nickel Cross-Coupling Catalysts Revealed by X-ray Absorption Spectroscopy","authors":"Kacie J. Nelson, Nathanael P. Kazmierczak, David A. Cagan, Alec H. Follmer, Thais R. Scott, Sumana L. Raj, Douglas Garratt, Natalia Powers-Riggs, Kelly J. Gaffney, Ryan G. Hadt, Amy A. Cordones","doi":"10.1021/acs.jpclett.4c02917","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c02917","url":null,"abstract":"Ni<sup>II</sup> 2,2′-bipyridine complexes are commonly invoked intermediates in metallaphotoredox cross-coupling reactions. Despite their ubiquity, design principles targeting improved catalytic performance remain underdetermined. A series of Ni(<sup>R</sup>bpy)(<sup>R<sup>′</sup></sup>Ar)Cl (R = MeOOC, <i>t</i>-Bu, R′ = CH<sub>3</sub>, CF<sub>3</sub>) complexes were proposed to have multiconfigurational electronic structures on the basis of multiconfigurational/multireference calculations, with significant mixing of Ni → bpy metal-to-ligand charge transfer (MLCT) configurations into the ground-state wave function. Here, Ni K-edge and L<sub>2,3</sub>-edge X-ray absorption spectroscopies provide experimental support for the highly covalent and multiconfigurational electronic structures of these complexes. The pre-edge intensity in the K-edge spectrum reflects highly covalent Ni–aryl bonding. The L<sub>3</sub>-edge spectral shape is dependent on ligand functionalization, and a feature reflecting the MLCT character is assigned using prior <i>ab initio</i> and new semiempirical calculations. The results suggest the push/pull effects of the aryl/bpy ligands moderate the changes in electron density on Ni during the multiredox cross-coupling reaction cycle.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"96 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}