安全科学与韧性(英文)Pub Date : 2024-08-20DOI: 10.1016/j.jnlssr.2024.06.011
Yuxin Sun , Jiansong Wu , Jun Zhang , Yuwei Xiong , Xiaohan Liu , Yiping Bai
{"title":"Scenario construction and vulnerability assessment of natural hazards-triggered power grid accidents","authors":"Yuxin Sun , Jiansong Wu , Jun Zhang , Yuwei Xiong , Xiaohan Liu , Yiping Bai","doi":"10.1016/j.jnlssr.2024.06.011","DOIUrl":"10.1016/j.jnlssr.2024.06.011","url":null,"abstract":"<div><div>In light of escalating urbanization trends and climate change impacts worldwide, the susceptibility of urban power grids to natural disasters has become an overarching global concern. Prior research has predominantly concentrated on singular calamities while often disregarding cumulative repercussions from multiple concurrent events affecting power grid resilience. This investigation presents an exhaustive framework for assessing grid vulnerabilities by quantifying diverse impacts from potential natural disaster scenarios and delineating adaptive pathways for evaluating inadvertent occurrences. The framework amalgamates an extensive array of metrics— including probability assessments, system state evaluations, trigger threshold analyses, responsiveness measurements, and adaptability adjustments— within a dynamic scenario-oriented model. The inquiry progresses through distinct stages: formulating an all-encompassing methodology for assessing vulnerabilities; assessing varied impacts stemming from different environmental perils; mapping out post-disaster evolutions; and executing a case analysis focusing on an urban power grid.</div><div>Concentrating specifically on rainfall, snowfall, and freezing incidents, the case analysis uses locale-specific data to appraise grid susceptibilities while employing multi-criteria decision analysis (MCDA) to facilitate decision-making. During this deliberative process, optimal strategies are derived, and mitigative actions are recommended with the aim of diminishing power-grid vulnerabilities. This investigation underscores intricate risk dynamics within urban power grids while presenting a feasible framework for sustainable planning and effective emergency responses in confronting natural hazards.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 498-511"},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-08-16DOI: 10.1016/j.jnlssr.2024.06.009
Zhenxiang Tao , Xiaohan Liu , Ying Li , Peifeng Hu , Weitong Tang , Ning Luo , Jiansong Wu , Rui Yang
{"title":"Intelligent emergency assisted decision-making method based on standard digitalization: Hazardous chemical accidents in industrial parks","authors":"Zhenxiang Tao , Xiaohan Liu , Ying Li , Peifeng Hu , Weitong Tang , Ning Luo , Jiansong Wu , Rui Yang","doi":"10.1016/j.jnlssr.2024.06.009","DOIUrl":"10.1016/j.jnlssr.2024.06.009","url":null,"abstract":"<div><div>Contemporary society is confronted with multifaceted challenges, and the intricate interplay of interconnected factors significantly complicates emergency response efforts. Current practices rely on quick decisions by domain experts; however, the limitations of individual expertise and the urgency of crises hinder both precision and standardization. To address these issues, we propose a novel approach: an intelligent method for emergency decision-making grounded in a standardized digital knowledge graph. First, our study examined the underlying theory of standardized digital transformation and event-chain evolution. This led to the construction of a knowledge graph encompassing standard emergency knowledge, as well as supplementary derivative data pertinent to event response. Second, through the application of semantic analysis and intention recognition of the decision target, coherent and interpretable query sentences for the decision system were crafted. These query sentences then served as a conduit for retrieving standard emergency knowledge relevant to the current emergency situation, as well as potential secondary disasters. The overarching goal is to provide emergency decision makers with effective support mechanisms that are both well informed and tailored to the specific demands of each situation.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 1","pages":"Pages 79-92"},"PeriodicalIF":3.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel explicit models for assessing the frictional resistance of pipe piles subjected to seismic effects","authors":"Duaa Al-Jeznawi , Laith Sadik , Saif Alzabeebee , Musab Aied Qissab Al-Janabi , Suraparb Keawsawasvong","doi":"10.1016/j.jnlssr.2024.06.010","DOIUrl":"10.1016/j.jnlssr.2024.06.010","url":null,"abstract":"<div><div>This paper introduces novel explicit models to predict the frictional resistance of open and closed-ended pipe piles subjected to seismic loading. This research employs genetic programming (GP) and multiobjective genetic algorithm-based evolutionary polynomial regression (EPR-MOGA) to develop closed-form expressions for estimating pile frictional resistance, utilizing widely used input parameters for enhanced practicality and applicability in engineering practice. The proposed models are developed using only three input variables: the corrected standard penetration test (SPT) blow count (<em>N</em><sub>1</sub>)<sub>60</sub>, the pile slenderness ratio (<em>L</em>/<em>D</em>), and the peak ground acceleration (PGA). This deliberate reduction in input complexity significantly enhances the models' applicability across a wide range of geotechnical scenarios and industries. The accuracy of the developed models was assessed via the coefficient of determination (<em>R</em><sup>2</sup>), root mean squared error (RMSE), and mean absolute error (MAE). In the case of the GP model, the evaluation metrics for the testing set for open-ended piles (<em>R</em><sup>2</sup>, RMSE, and MAE values) are 0.89, 0.43, and 0.35, respectively, whereas the corresponding values for closed-ended piles are 0.93, 0.38, and 0.3, respectively. On the other hand, the EPR-MOGA approach achieves similarly encouraging results, with performance metrics of 0.92, 0.37, and 0.29 for open-ended piles and 0.91, 0.39, and 0.30 for closed-ended piles.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 1","pages":"Pages 29-37"},"PeriodicalIF":3.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-08-09DOI: 10.1016/j.jnlssr.2024.06.007
Frimpong Kwaku Asare, Amin Moniri-Morad, Peter Chidi Augustine, Javad Sattarvand
{"title":"Vehicle-augmented evacuation integer programming model for improving safety and efficiency in underground mines","authors":"Frimpong Kwaku Asare, Amin Moniri-Morad, Peter Chidi Augustine, Javad Sattarvand","doi":"10.1016/j.jnlssr.2024.06.007","DOIUrl":"10.1016/j.jnlssr.2024.06.007","url":null,"abstract":"<div><div>Ensuring the safe evacuation of miners during fire emergencies in the shortest possible time is one of the most critical aspects of underground mining operations. Despite advances in mining evacuation methods, little research has been conducted on mine vehicles in this context. This study proposed a vehicle-augmented evacuation integer programming (VEIP) model to minimize the total evacuation cost as a function of the required evacuation time during fire emergencies. This approach aims to minimize the risk of miners being exposed to dangerous fire conditions by strategically integrating mine vehicles into the evacuation procedure. The approach determines the optimal evacuation path for each miner, considering factors such as available mine vehicles, miners’ locations, refuge chambers, and fresh-air bases. To validate the effectiveness of the developed VEIP model, a case study was conducted using the mine layout of the Turquoise Ridge Underground Mine in the United States. Furthermore, a statistical comparison was conducted between the VEIP model and the evacuation integer programming (EIP) model, tailored to evacuation on foot, to emphasize vehicles' influence on the evacuation process. The results showed that integrating mine vehicles into evacuation procedures significantly reduces the total evacuation time. A cost savings analysis in the VEIP model revealed that the evacuation time savings increase exponentially as the number of miners present during evacuation increases. The potential benefits of using mine vehicles to improve the efficiency of evacuation from underground mine fires were highlighted in this study.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 1","pages":"Pages 21-28"},"PeriodicalIF":3.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-08-08DOI: 10.1016/j.jnlssr.2024.06.008
Wenjun Fu, Jintao Li, Jinghong Wang, Jialin Wu
{"title":"Risk assessment of fire casualty in underground commercial building based on FFTA-BN model","authors":"Wenjun Fu, Jintao Li, Jinghong Wang, Jialin Wu","doi":"10.1016/j.jnlssr.2024.06.008","DOIUrl":"10.1016/j.jnlssr.2024.06.008","url":null,"abstract":"<div><div>With the development of urbanization, underground commercial buildings (UCB) are facing severe challenges in fire safety management due to their unique structure and environmental characteristics. This study constructed a fire casualty risk assessment model that combines fuzzy fault tree analysis (FFTA) and Bayesian network (BN), aiming to quantitatively analyze the dynamic risk of casualties caused by fires in UCB. Fault tree analysis (FTA) is used to comprehensively identify the key risk factors leading to fire casualties in UCB, involving 55 basic events, and the occurrence probability of basic events was calculated via a fuzzy set. The FTA model was transformed into a BN structure via conversion rules and was optimized. The optimized BN model can dynamically analyze the specific fire evolution process and quantify the impacts of different emergency response measures on fire control, evacuation, and casualties. Innovatively, from the post-incident (a historical case study) and pre-incident (two potentially different fire scenarios) perspectives, various emergency plans were scientifically evaluated, providing reasonable suggestions and decision support for emergency management. The results indicate that the model can effectively guide the formulation of fire prevention and control strategies and emergency response work of UCB and provide an innovative tool for improving the safety of UCB and reducing fire accidents and casualties.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 470-485"},"PeriodicalIF":3.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-08-03DOI: 10.1016/j.jnlssr.2024.06.006
Emine Üstünoldu
{"title":"Determination of individual disaster resilience levels of hospital staff: A case study of Kartal Dr. Lütfi Kirdar City Hospital","authors":"Emine Üstünoldu","doi":"10.1016/j.jnlssr.2024.06.006","DOIUrl":"10.1016/j.jnlssr.2024.06.006","url":null,"abstract":"<div><div>Istanbul is one of Turkey's most important financial and industrial centers, and it is located in a region with a high potential for seismicity. Due to its historical architecture and high level of urbanization, the city has a large population and is particularly vulnerable due to the building stock that will be affected by earthquakes. In the event of a possible earthquake in Istanbul, it is crucial that the hospital staff have high levels of disaster resilience/resilience. This is particularly important given the seismically isolated and earthquake-resistant structure of Istanbul Kartal Dr. Lütfi Kırdar City Hospital and its capacity to serve those injured by the earthquake. This study examines the resilience levels of hospital staff at Kartal Dr. Lütfi Kırdar City Hospital in the face of earthquake disasters and the various factors that affect these resilience levels. The data for this study were collected using a 13-question personal information form and the ‘Individual Disaster Resilience Assessment (IDRA)’ scale developed by DiTirro (2018). Descriptive statistics, Pearson Chi-square tests, Independent Samples T-tests, and One-Way ANOVA were used to analyze the data. The research found that the hospital staff's IDRA scores averaged 3.27. It was concluded that the mean resilience score of the participants was above the medium level. The research findings show that receiving disaster training or being prepared for disasters in advance significantly influences individual resistance/resilience. In this context, it is essential to determine the earthquake resistance levels of all healthcare workers in Istanbul, especially those at the city hospital where the study was conducted. Necessary training should be provided, and simulation-based disaster drills should be planned and integrated into in-service training programs. Additionally, projects should be developed to ensure that healthcare workers can reach their hospitals safely during disaster situations.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 449-459"},"PeriodicalIF":3.7,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-07-30DOI: 10.1016/j.jnlssr.2024.06.005
Pavel V. Yemelin , Sergey S. Kudryavtsev , Natalya K. Yemelina
{"title":"Improving the industrial safety management system at enterprises with chemically hazardous sites","authors":"Pavel V. Yemelin , Sergey S. Kudryavtsev , Natalya K. Yemelina","doi":"10.1016/j.jnlssr.2024.06.005","DOIUrl":"10.1016/j.jnlssr.2024.06.005","url":null,"abstract":"<div><div>This study focuses on developing an industrial and occupational safety management system for enterprises that contain chemically hazardous sites. The methodology, based on an expert approach, enabled the authors to design the structure of the risk management system at such enterprises. It also facilitated the identification of clusters and their descriptors, along with their roles in evaluating the state of the safety management system. The proposed methodology features a flexible and universal structure, making it applicable for assessing industrial and occupational safety across different enterprises, taking into account the specific technological aspects of production processes. In this case study, the authors examined the accident rates, injury hazards, and health risks associated with chemically hazardous sites in enterprises located in the Republic of Kazakhstan. The findings of this study provide a methodological approach that industrial enterprises can use to evaluate the effectiveness of their safety management systems. This allows for the development of measures aimed at preventing chemical accidents and reducing their impacts.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 432-448"},"PeriodicalIF":3.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-07-22DOI: 10.1016/j.jnlssr.2024.05.005
Xinzhi Wang, Jiayu Guo, Xiangfeng Luo, Hang Yu
{"title":"DyHDGE: Dynamic heterogeneous transaction graph embedding for safety-centric fraud detection in financial scenarios","authors":"Xinzhi Wang, Jiayu Guo, Xiangfeng Luo, Hang Yu","doi":"10.1016/j.jnlssr.2024.05.005","DOIUrl":"10.1016/j.jnlssr.2024.05.005","url":null,"abstract":"<div><div>Dynamic graph fraud detection aims to distinguish fraudulent entities that deviate significantly from most benign entities within an ever-changing graph network. However, when dealing with different financial fraud scenarios, existing methods face challenges, resulting in difficulty in effectively ensuring financial security. In fraud scenarios, transaction data are generated in real time, in which a strong temporal relationship between multiple fraudulent transactions is observed. Traditional dynamic graph models struggle to effectively balance the temporal features of nodes and spatial structural features, failing to handle different types of nodes in the graph network. In this study, to extract the temporal and structural information, we proposed a dynamic heterogeneous transaction graph embedding (DyHDGE) network based on a dynamic heterogeneous transaction graph, considering both temporal and structural information while incorporating heterogeneous data. To separately extract temporal relationships between transactions and spatial structural relationships between nodes, we used a heterogeneous temporal graph representation learning module and a temporal graph structure information extraction module. Additionally, we designed two loss functions to optimize node feature representations. Extensive experiments demonstrated that the proposed DyHDGE significantly outperformed previous state-of-the-art methods on two simulated datasets of financial fraud scenarios. This capability contributes to enhancing security in financial consumption scenarios.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 486-497"},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the risks of automation bias in healthcare artificial intelligence applications: A Bowtie analysis","authors":"Moustafa Abdelwanis, Hamdan Khalaf Alarafati, Maram Muhanad Saleh Tammam, Mecit Can Emre Simsekler","doi":"10.1016/j.jnlssr.2024.06.001","DOIUrl":"10.1016/j.jnlssr.2024.06.001","url":null,"abstract":"<div><div>This study conducts an in-depth review and Bowtie analysis of automation bias in AI-driven Clinical Decision Support Systems (CDSSs) within healthcare settings. Automation bias, the tendency of human operators to over-rely on automated systems, poses a critical challenge in implementing AI-driven technologies. To address this challenge, Bowtie analysis is employed to examine the causes and consequences of automation bias affected by over-reliance on AI-driven systems in healthcare. Furthermore, this study proposes preventive measures to address automation bias during the design phase of AI model development for CDSSs, along with effective mitigation strategies post-deployment. The findings highlight the imperative role of a systems approach, integrating technological advancements, regulatory frameworks, and collaborative endeavors between AI developers and healthcare practitioners to diminish automation bias in AI-driven CDSSs. We further identify future research directions, proposing quantitative evaluations of the mitigation and preventative measures.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 460-469"},"PeriodicalIF":3.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
安全科学与韧性(英文)Pub Date : 2024-07-15DOI: 10.1016/j.jnlssr.2024.05.004
Nan Zheng, Danhuai Guo
{"title":"A spatial scene reconstruction framework in emergency response scenario","authors":"Nan Zheng, Danhuai Guo","doi":"10.1016/j.jnlssr.2024.05.004","DOIUrl":"10.1016/j.jnlssr.2024.05.004","url":null,"abstract":"<div><p>Rapid and accurate acquisition and analysis of information is crucial for emergency management, but traditional methods have limitations such as incomplete information acquisition and slow processing speed. The natural language oriented spatial scene reconstruction method provides a new solution for emergency management, but existing generative models have limited understanding of spatial relationships and lack high-quality training samples. To address these issues, this paper proposes a novel spatial scene reconstruction framework. Specifically, the BERT based spatial information knowledge graph extraction method is used to encode the input text, label and classify the encoded text, identify spatial objects and relationships in the text, and accurately extract spatial information. Additionally, a large number of manual experiments were conducted to explore quantitative biases in human spatial cognition, and based on the obtained biases, a greedy resolution method based on cost functions was used to fine tune the layout of conflicting spatial objects and solve the conflicting spatial information in the spatial information knowledge graph. Finally, use graph convolutional neural networks to obtain scene knowledge graph embeddings that consider spatial constraints. In addition, a high-quality training sample set of “text-scene-knowledge graph” was constructed.</p></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 400-412"},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666449624000434/pdfft?md5=2b433a82099151cad1e129fa737efc0a&pid=1-s2.0-S2666449624000434-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}