{"title":"Shielding effectiveness of 0.96 MxMg1−xTiO3 - 0.04 SrTiO3 solid solutions in Ku and K frequency band (12.40 GHz-18.00 GHz)","authors":"Komal Sharma, Hardeep Kaur, Shalini Bahel","doi":"10.1007/s10832-023-00316-y","DOIUrl":"10.1007/s10832-023-00316-y","url":null,"abstract":"<div><p>In this research work, the microwave dielectric and shielding properties of (0.96M<sub>x</sub>Mg<sub>1-x</sub>TiO<sub>3</sub> – 0.04SrTiO<sub>3</sub>) (M = 0, x = 0.0; M = Zn, x = 0.05; M = Zn, x = 0.075; M = Co, x = 0.05; and M = Co, x = 0.075) solid solutions were studied in a Ku and K frequency band using a vector network analyzer. The samples were prepared via the auto-ignition combustion method and sintered at a temperature of 1200°C for 4 hours. An investigation of the shielding properties revealed that these materials' shielding effectiveness (SE) varied as a function of composition and frequency. The shielding analysis exhibited that compositions (M = Zn, x = 0.05) and (M = Co, x = 0.05) showed maximum shielding effectiveness by providing SE > 10 dB for a bandwidth of 2.72 GHz and 4.48 GHz, respectively. The highest SE was observed for composition (M = Co, x = 0.05) at a frequency of 17.21 GHz with SE~31.05 dB corresponding to a restriction of 99.81 % of incident power. These compositions are proposed as effective shielding materials for electromagnetic radiations in Ku-band and K-band.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 2","pages":"71 - 79"},"PeriodicalIF":1.7,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42627900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Zhang, Jianli Ma, Chang Li, Chen Chen, Yubin She
{"title":"Phase compositions and dielectric properties of Li2Mg3Sn1 − xO6 ceramics attained by reaction sintering process","authors":"Yu Zhang, Jianli Ma, Chang Li, Chen Chen, Yubin She","doi":"10.1007/s10832-023-00317-x","DOIUrl":"10.1007/s10832-023-00317-x","url":null,"abstract":"<div><p>The reaction sintering, without calcination and following re-grinding, has been paid increasing attention. Non - stoichiometric Li<sub>2</sub>Mg<sub>3</sub>Sn<sub>1 − <i>x</i></sub>O<sub>6</sub> (<i>x</i> = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were successfully gained through reaction sintering process in the study, and its phase composition, morphology and dielectric characteristics were studied. This XRD patterns of Li<sub>2</sub>Mg<sub>3</sub>Sn<sub>1 − <i>x</i></sub>O<sub>6</sub> samples prepared after sintering at 1,305 ℃ for 6 h indicates that green bodies are mainly composed of Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> phase, accompanied by the second phase of Mg<sub>2</sub>SnO<sub>4</sub>. A host of pores, elliptic - like grains and wrinkle - like grains were visibly observed from the SEM images of Li<sub>2</sub>Mg<sub>3</sub>Sn<sub>1 − <i>x</i></sub>O<sub>6</sub> ceramics, which is because of the severe volatilization of Li elements at high temperature. The apparent density, relative permittivity, quality factor and temperature coefficient of resonant frequency of samples will be devastate owing to porous morphology and Mg<sub>2</sub>SnO<sub>4</sub> phase to a large extent. Finally, when <i>x</i> = 0.08, Li<sub>2</sub>Mg<sub>3</sub>Sn<sub>0.92</sub>O<sub>6</sub> ceramics have optimal dielectric performances: <i>ε</i><sub><i>r</i></sub> = 9.133, <i>Q×f</i> = 55,429 GHz, <i>τ</i><sub><i>f</i></sub> = -36.1 ppm/℃.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"51 - 58"},"PeriodicalIF":1.7,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ameen Abdelrahman, Fouad Erchiqui, Mourad Nedil, Brahim Aïssa, Mohemed Siaj
{"title":"Electrically conductive PDMS/Clay nanocomposites assembled with graphene, copper and silver nanoparticles for flexible electronic applications","authors":"Ameen Abdelrahman, Fouad Erchiqui, Mourad Nedil, Brahim Aïssa, Mohemed Siaj","doi":"10.1007/s10832-023-00315-z","DOIUrl":"10.1007/s10832-023-00315-z","url":null,"abstract":"<div><p>We describe the development and characterization of a stretchy and resilient micro-strip antenna made from a nanocomposite of polydimethylsiloxane (PDMS) and bentonite clay loaded with silver, copper, and graphene nanoparticles. The physical, mechanical, and thermal characteristics of the nanocomposite were extensively evaluated in relation to the different nanomaterial loading into the PDMS. This has included UV-Vis spectroscopy, X-ray diffraction, and other techniques in addition to tensile and flexural tests, rheological analysis, thermogravimetric analysis, scanning and transmission electron microscopy, dynamic viscosity study, and ion coupled plasma. The conductivity of the fabricated micro-strip antennas was assessed using electrochemical impedance spectroscopy, and the antenna pattern was suitable for usage in RF equipment for cutting-edge applications like military, sensing, and space.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"37 - 50"},"PeriodicalIF":1.7,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun Zhao, Hongyang Su, Jianbing Xu, Shengru Chen, Peng Liu, Er-Jia Guo, Yuanhua Lin, Harry L. Tuller, Di Chen
{"title":"Measurement and control of oxygen non-stoichiometry in praseodymium-cerium oxide thin films by coulometric titration","authors":"Yun Zhao, Hongyang Su, Jianbing Xu, Shengru Chen, Peng Liu, Er-Jia Guo, Yuanhua Lin, Harry L. Tuller, Di Chen","doi":"10.1007/s10832-023-00309-x","DOIUrl":"10.1007/s10832-023-00309-x","url":null,"abstract":"<div><p>Oxygen non-stoichiometry profoundly impacts the electrical, magnetic, and catalytic properties of metal oxide. Limited by the low mass and volume of thin oxide films, conventional quantification methods, such as thermogravimetry, are not directly applicable. While chemical capacitance has been successfully applied to monitor oxygen non-stoichiometry in thin oxide films, detailed a-priori understanding of the defect chemistry is often very helpful in its interpretation. In this study, changes in non-stoichiometry in Pr doped CeO<sub>2</sub> (PCO) thin films are measured by coulometric titration. <i>I</i>-<i>V</i> titration measurements are performed on electrochemical cells, over the temperature range from 550 to 700 ℃, oxygen partial pressure range from 10<sup>-4</sup> to 0.21 atm, and bias range of -50 mV to 50 mV, to extract changes in stoichiometry. The results agree well with values obtained by chemical capacitance, demonstrating the utility in applying coulometric titration to investigate oxygen non-stoichiometry in oxide thin films.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"28 - 36"},"PeriodicalIF":1.7,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00309-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdallah M. Elgorban, D. Sivaganesh, Muthuraj Arunpandian, Ali H. Bahkali, Rajalakshmanan Eswaramoorthy, Nouf S. S. Zaghloul, Meenakshi Verma, Asad Syed
{"title":"Visible light-embedded CuO/ZnO twofold execution for photocatalysis and photoluminescence","authors":"Abdallah M. Elgorban, D. Sivaganesh, Muthuraj Arunpandian, Ali H. Bahkali, Rajalakshmanan Eswaramoorthy, Nouf S. S. Zaghloul, Meenakshi Verma, Asad Syed","doi":"10.1007/s10832-023-00311-3","DOIUrl":"10.1007/s10832-023-00311-3","url":null,"abstract":"<div><p>In the present work, tackle the two issues with one single activity resource that strategy has followed. The organic dye methyl orange (MO) and drug ciprofloxacin (CIP) have been effectively degraded by the synthesized ZnO@CuO under visible light irradiation. The hexagonal structured zinc oxide (ZnO), monoclinic structured copper oxide (CuO) and the mixed phase of ZnO@CuO has been prepared by the hydrothermal method. The structural characterization of prepared materials has been analyzed by powder X-ray diffraction (P-XRD) and the Rietveld refinement technique. The surface morphology of synthesized materials has been measured by scanning electron microscope characterization. The luminescence performance of prepared materials has studied by photoluminescence (PL) characterization. The photocatalytic results suggest that the ZnO@CuO composite is the effective candidate of degradation of ciprofloxacin antibiotic drug and methyl orange dye. From the results, ZnO@CuO revealed excellent photocatalytic behavior for CIP and MO degradation under stimulated sun light irradiation with the efficiency of above 95%. In addition, the optimum parameters were analyzed to the degradation process. This type of affordable photocatalyst gives a new beginning for further research studies. In addition, the electron density distribution analysis of synthesized materials has been studied.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"12 - 27"},"PeriodicalIF":1.7,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00311-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolong Huang, Xin Liao, Yong Pu, Dachuan Zhu, Qun Yan
{"title":"The enhanced electrical properties of TiO2-Nb2O5-ZnO varistor by sintering with the pre-synthesized B-Bi-O frit","authors":"Xiaolong Huang, Xin Liao, Yong Pu, Dachuan Zhu, Qun Yan","doi":"10.1007/s10832-023-00312-2","DOIUrl":"10.1007/s10832-023-00312-2","url":null,"abstract":"<div><p>In this work, H<sub>3</sub>BO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> with the ratio 3:2 were melted at 750 °C and then quenched in water to produce B-Bi-O frit, which was sintered and co-doped with TiO<sub>2</sub>-0.60Nb<sub>2</sub>O<sub>5</sub>-0.50ZnO varistor ceramics. It is found that B-Bi-O frit can reduce the sintering temperature and improve the electrical properties of TiO<sub>2</sub> ceramics. The best comprehensive electrical properties with the nonlinear coefficient up to 8.9, the breakdown voltage down to 4.92 V/mm, the relative dielectric constant of 4.47*10<sup>5</sup> and the leakage current of 0.102 mA are achieved by sintering the ceramics doped with 3 wt% B-Bi-O frit at 1400 °C. XRD analysis shows that B-Bi-O frit is an amorphous phase, and no second phase can be found in ceramics after the frit is doped. SEM morphologies display that B-Bi-O frit is beneficial to decrease the porosity while increase the grain size, and EDS mapping further presents no elements segregate on the grain boundary. XPS spectra demonstrate the coexistence of Ti<sup>3+</sup> ions, Ti<sup>4+</sup> ions and oxygen vacancies in TiO<sub>2</sub> ceramics. As a result, it can be concluded that the enhancement of the electrical properties of TiO<sub>2</sub> ceramics is mainly attributed to the following aspects: on the one hand, B-Bi-O frit helps to produce liquid phase sintering, which would reduce the porosity while increase grain size and promote solid solution of Nb<sub>2</sub>O<sub>5</sub> and ZnO in TiO<sub>2</sub> ceramic. On the other hand, B and Bi elements can also act as acceptor dopants in TiO<sub>2</sub> ceramic to further promote grain semi-conductivity and increase grain boundary barrier height.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"1 - 11"},"PeriodicalIF":1.7,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00312-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41082672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Lataoui, A. Triki, S. Hcini, A. Oueslati, S. Zemni, O. Kanoun
{"title":"Conduction mechanisms and complex impedance analysis in La0.6Sr0.4FeO3 ceramic","authors":"R. Lataoui, A. Triki, S. Hcini, A. Oueslati, S. Zemni, O. Kanoun","doi":"10.1007/s10832-023-00310-4","DOIUrl":"10.1007/s10832-023-00310-4","url":null,"abstract":"<div><p>La<sub>0.6</sub>Sr<sub>0.4</sub>FeO<sub>3</sub> ceramic was elaborated by solid-state route. Preliminary room-temperature structural analysis evidences the sample formation in the orthorhombic structure and its phase purity. Electrical properties of the studied ceramic have been investigated according to dielectric measurements in the frequency range 10<sup>–1</sup> - 10<sup>6</sup> Hz and the temperature range 93 - 313 K. Electrical conductivity curves exhibit a step-like behavior, at low temperatures, attributed to grain boundaries and grain contributions which are well described by the two Jonscher equations. The grains conduction mechanism is consistent with the thermally activated hopping of small polaron (SPH). Whereas, this mechanism is no longer satisfied for grain boundaries conduction mechanism at lower temperatures. Indeed, this latter is governed by the variable range hopping (VRH) model. This electrical conductivity analysis is further confirmed by the complex impedance formalism according to the obtained activation energies. Analysis of Nyquist plots at low temperatures has evidenced the presence of two grain boundaries effects attributed to the heterogeneous structure of La<sub>0.6</sub>Sr<sub>0.4</sub>FeO<sub>3</sub> grain boundary according to the morphological analysis<sub>.</sub> Such characteristic may be at the origin of the grain boundaries electrical conductivity mechanism change at low temperatures.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"50 4","pages":"121 - 138"},"PeriodicalIF":1.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00310-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5067209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Hamza Safeer, Muhammad Hassan Sajjad, Nawazish A. Khan
{"title":"Effects of cobalt nanoparticles addition in Cu0.5Tl0.5-1223 superconductor composite","authors":"Syed Hamza Safeer, Muhammad Hassan Sajjad, Nawazish A. Khan","doi":"10.1007/s10832-023-00313-1","DOIUrl":"10.1007/s10832-023-00313-1","url":null,"abstract":"<div><p>Cobalt nanoparticles added Co<sub>x</sub>/Cu<sub>0.5</sub>Tl<sub>0.5</sub>Ba<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10-δ</sub> superconducting composites were synthesized by solid-state reaction method and their superconducting properties were reported. The samples exhibit an orthorhombic crystal structure and the volume of the unit cell decreases with the addition of cobalt nanoparticles, indicating that Co<sup>+3</sup> ion diffuses from the intergranular region into the unit cells. The suppression of the onset of superconductivity and magnitude of diamagnetism is observed in AC-susceptibility measurements showing magnetic scattering from the charged particles induced by doped Co<sup>+3</sup> atoms into the unit cell. The doping of unit cells with Cobalt nanoparticles from the inter-grain regions is confirmed by a shift in the peak position and intensity of various oxygen modes in FTIR absorption measurements. Excess conductivity analysis of conductivity data has shown an increase in the coherence length along the c-axis, the Fermi velocity of the carriers, and the energy required to break the Cooper-pairs with the addition of Co nanoparticles. The observed increase in the values of these parameters is likely associated with an increase in the density of charge carriers in the conducting copper oxide planes. It is suggested to be arising from the magnetic scattering of Co<sup>+3</sup> ions diffusing from inter-grain sites in the unit cell. The weak pinning is also witnessed in form of an increase in the London penetration depth and Ginzburg Landau (GL) parameter κ in Co<sup>+3</sup> enriched samples.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"50 4","pages":"112 - 120"},"PeriodicalIF":1.7,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4561681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saiwei Luan, Pengfei Wang, Lei Zhang, Yanmei He, Xiong Huang, Gang Jian, Cuicui Liu, Shuhui Yu, Rong Sun, Xiuhua Cao, Zhenxiao Fu
{"title":"Atmospherically hydrothermal assisted solid-state reaction synthesis of ultrafine BaTiO3 powder with high tetragonality","authors":"Saiwei Luan, Pengfei Wang, Lei Zhang, Yanmei He, Xiong Huang, Gang Jian, Cuicui Liu, Shuhui Yu, Rong Sun, Xiuhua Cao, Zhenxiao Fu","doi":"10.1007/s10832-023-00308-y","DOIUrl":"10.1007/s10832-023-00308-y","url":null,"abstract":"<div><p>Ultrafine ceramic powders with high tetragonality are the fundamental for the multi-layer ceramic capacitors (MLCCs). In this study, an efficient method of atmospherically hydrothermal assisted solid-state synthesis for ultrafine BaTiO<sub>3</sub> particles is presented. The BaTiO<sub>3</sub> nanopowders with homogeneous distribution, a mean particle size ~ 260 nm and high tetragonality of 1.0095 were obtained by at the optimal parameters of hydrothermal time of 6 h, Ba(OH)<sub>2</sub>·8H<sub>2</sub>O/BaCO<sub>3</sub> = 0.25/0.75 and calcination temperature of 1000 <sup>o</sup>C. XRD and HRTEM analyses revealed a “core-shell” structure of TiO<sub>2</sub>@BaTiO<sub>3</sub> formed in the first-step hydrothermal process, which reduces the diffusion distance between BaCO<sub>3</sub> and TiO<sub>2</sub>, resulting in a lower calcination temperature at the second-step solid-state reaction. Compared with pure hydrothermal and solid-state reaction processes, the atmospherically hydrothermal assisted solid-state synthesis in this study shows larger ability for improving the particle size distribution and the tetragonality, reducing defects of BaTiO<sub>3</sub> particles. In particular, the grain size, sintering density, and dielectric constant at the Curie temperature of BaTiO<sub>3</sub> ceramics are 1.93 μm, 98%, and 7066, respectively. In the solid-state reaction stage, the lattice diffusion distance from BaO to TiO<sub>2</sub> tends to decrease due to the formation of BaTiO<sub>3</sub> shells, thus, high tetragonal and relatively small particle size of BaTiO<sub>3</sub> powder was synthesized. This work presents a method for preparing ultrafine BaTiO<sub>3</sub> powders with large tetragonality for MLCCs.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"50 4","pages":"97 - 111"},"PeriodicalIF":1.7,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00308-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4529644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}