应用数学年刊:英文版最新文献

筛选
英文 中文
On Fractional Smoothness of Modulus of Functions 关于函数模的分数阶光滑性
应用数学年刊:英文版 Pub Date : 2021-06-01 DOI: 10.4208/aam.oa-2021-0006
Dong Li
{"title":"On Fractional Smoothness of Modulus of Functions","authors":"Dong Li","doi":"10.4208/aam.oa-2021-0006","DOIUrl":"https://doi.org/10.4208/aam.oa-2021-0006","url":null,"abstract":"We consider the Nemytskii operators $uto |u|$ and $uto u^{pm}$ in a bounded domain $Omega$ with $C^2$ boundary. We give elementary proofs of the boundedness in $H^s(Omega)$ with $0le s<3/2$.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42480540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Order Fully Discrete Energy Diminishing Evolving Surface Finite Element Methods for a Class of Geometric Curvature Flows 一类几何曲率流的高阶全离散能量递减演化曲面有限元方法
应用数学年刊:英文版 Pub Date : 2021-06-01 DOI: 10.4208/aam.oa-2021-0007
global sci
{"title":"High-Order Fully Discrete Energy Diminishing Evolving Surface Finite Element Methods for a Class of Geometric Curvature Flows","authors":"global sci","doi":"10.4208/aam.oa-2021-0007","DOIUrl":"https://doi.org/10.4208/aam.oa-2021-0007","url":null,"abstract":"","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42675372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Transverse Instability of the CH-KP-I Equation CH-KP-I方程的横向不稳定性
应用数学年刊:英文版 Pub Date : 2021-04-22 DOI: 10.4208/aam.oa-2021-0004
R. Chen, Jie Jin
{"title":"Transverse Instability of the CH-KP-I Equation","authors":"R. Chen, Jie Jin","doi":"10.4208/aam.oa-2021-0004","DOIUrl":"https://doi.org/10.4208/aam.oa-2021-0004","url":null,"abstract":"The Camassa–Holm–Kadomtsev–Petviashvili-I equation (CH-KP-I) is a two dimensional generalization of the Camassa–Holm equation (CH). In this paper, we prove transverse instability of the line solitary waves under periodic transverse perturbations. The proof is based on the framework of [18]. Due to the high nonlinearity, our proof requires necessary modification. Specifically, we first establish the linear instability of the line solitary waves. Then through an approximation procedure, we prove that the linear effect actually dominates the nonlinear behavior.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45009304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary Homogenization of a Class of Obstacle Problems 一类障碍问题的边界均匀化
应用数学年刊:英文版 Pub Date : 2021-04-14 DOI: 10.4208/aam.oa-2022-0001
Jingzhi Li, Hongyu Liu, Lan Tang, Jiangwen Wang
{"title":"Boundary Homogenization of a Class of Obstacle Problems","authors":"Jingzhi Li, Hongyu Liu, Lan Tang, Jiangwen Wang","doi":"10.4208/aam.oa-2022-0001","DOIUrl":"https://doi.org/10.4208/aam.oa-2022-0001","url":null,"abstract":"We study homogenization of a boundary obstacle problem on C domain D for some elliptic equations with uniformly elliptic coefficient matrices γ. For any ǫ ∈ R+, ∂D = Γ ∪ Σ, Γ ∩ Σ = ∅ and Sǫ ⊂ Σ with suitable assumptions, we prove that as ǫ tends to zero, the energy minimizer u of ∫ D |γ∇u|dx, subject to u ≥ φ on Sε, up to a subsequence, converges weakly in H(D) to ũ which minimizes the energy functional ∫ D |γ∇u| + ∫ Σ (u− φ)−μ(x)dSx, where μ(x) depends on the structure of Sǫ and φ is any given function in C∞(D).","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48415158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KAM and Geodesic Dynamics of Blackholes 黑洞的测地线动力学
应用数学年刊:英文版 Pub Date : 2020-12-05 DOI: 10.4208/aam.oa-2021-0002
Jinxin Xue
{"title":"KAM and Geodesic Dynamics of Blackholes","authors":"Jinxin Xue","doi":"10.4208/aam.oa-2021-0002","DOIUrl":"https://doi.org/10.4208/aam.oa-2021-0002","url":null,"abstract":"In this paper we apply KAM theory and the Aubry-Mather theory for twist maps to the study of bound geodesic dynamics of a perturbed blackhole background. The general theories apply mainly to two observable phenomena: the photon shell (unstable bound spherical orbits) and the quasi-periodic oscillations. We discover there is a gap structure in the photon shell that can be used to reveal information of the perturbation.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48804087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Negligible Obstructions and Turán Exponents 可忽略障碍与Turán指数
应用数学年刊:英文版 Pub Date : 2020-07-06 DOI: 10.4208/aam.OA-2022-0008
T. Jiang, Zilin Jiang, Jie Ma
{"title":"Negligible Obstructions and Turán Exponents","authors":"T. Jiang, Zilin Jiang, Jie Ma","doi":"10.4208/aam.OA-2022-0008","DOIUrl":"https://doi.org/10.4208/aam.OA-2022-0008","url":null,"abstract":"We show that for every rational number $r in (1,2)$ of the form $2 - a/b$, where $a, b in mathbb{N}^+$ satisfy $lfloor a/b rfloor^3 le a le b / (lfloor b/a rfloor +1) + 1$, there exists a graph $F_r$ such that the Turan number $operatorname{ex}(n, F_r) = Theta(n^r)$. Our result in particular generates infinitely many new Turan exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh--Conlon conjecture.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41920679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信