一类障碍问题的边界均匀化

Jingzhi Li, Hongyu Liu, Lan Tang, Jiangwen Wang
{"title":"一类障碍问题的边界均匀化","authors":"Jingzhi Li, Hongyu Liu, Lan Tang, Jiangwen Wang","doi":"10.4208/aam.oa-2022-0001","DOIUrl":null,"url":null,"abstract":"We study homogenization of a boundary obstacle problem on C domain D for some elliptic equations with uniformly elliptic coefficient matrices γ. For any ǫ ∈ R+, ∂D = Γ ∪ Σ, Γ ∩ Σ = ∅ and Sǫ ⊂ Σ with suitable assumptions, we prove that as ǫ tends to zero, the energy minimizer u of ∫ D |γ∇u|dx, subject to u ≥ φ on Sε, up to a subsequence, converges weakly in H(D) to ũ which minimizes the energy functional ∫ D |γ∇u| + ∫ Σ (u− φ)−μ(x)dSx, where μ(x) depends on the structure of Sǫ and φ is any given function in C∞(D).","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary Homogenization of a Class of Obstacle Problems\",\"authors\":\"Jingzhi Li, Hongyu Liu, Lan Tang, Jiangwen Wang\",\"doi\":\"10.4208/aam.oa-2022-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study homogenization of a boundary obstacle problem on C domain D for some elliptic equations with uniformly elliptic coefficient matrices γ. For any ǫ ∈ R+, ∂D = Γ ∪ Σ, Γ ∩ Σ = ∅ and Sǫ ⊂ Σ with suitable assumptions, we prove that as ǫ tends to zero, the energy minimizer u of ∫ D |γ∇u|dx, subject to u ≥ φ on Sε, up to a subsequence, converges weakly in H(D) to ũ which minimizes the energy functional ∫ D |γ∇u| + ∫ Σ (u− φ)−μ(x)dSx, where μ(x) depends on the structure of Sǫ and φ is any given function in C∞(D).\",\"PeriodicalId\":58853,\"journal\":{\"name\":\"应用数学年刊:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学年刊:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4208/aam.oa-2022-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.oa-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有一致椭圆系数矩阵γ的椭圆型方程在C域D上边界障碍问题的齐次化问题。对于任何ǫ∈R +,∂D =Γ∪Σ,Γ∩Σ=∅和Sǫ⊂Σ与合适的假设,我们证明当ǫ趋于零,能量最小值你∫D |γ|∇u dx,受制于u≥φ年代ε,子序列,收敛弱在H (D)ũ最小化能量函数∫D |γ|∇u +∫Σ(u−φ)−μ(x) dSx,在μ(x)的结构取决于Sǫ和φ是任何给定函数C∞(D)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary Homogenization of a Class of Obstacle Problems
We study homogenization of a boundary obstacle problem on C domain D for some elliptic equations with uniformly elliptic coefficient matrices γ. For any ǫ ∈ R+, ∂D = Γ ∪ Σ, Γ ∩ Σ = ∅ and Sǫ ⊂ Σ with suitable assumptions, we prove that as ǫ tends to zero, the energy minimizer u of ∫ D |γ∇u|dx, subject to u ≥ φ on Sε, up to a subsequence, converges weakly in H(D) to ũ which minimizes the energy functional ∫ D |γ∇u| + ∫ Σ (u− φ)−μ(x)dSx, where μ(x) depends on the structure of Sǫ and φ is any given function in C∞(D).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
544
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信