CH-KP-I方程的横向不稳定性

R. Chen, Jie Jin
{"title":"CH-KP-I方程的横向不稳定性","authors":"R. Chen, Jie Jin","doi":"10.4208/aam.oa-2021-0004","DOIUrl":null,"url":null,"abstract":"The Camassa–Holm–Kadomtsev–Petviashvili-I equation (CH-KP-I) is a two dimensional generalization of the Camassa–Holm equation (CH). In this paper, we prove transverse instability of the line solitary waves under periodic transverse perturbations. The proof is based on the framework of [18]. Due to the high nonlinearity, our proof requires necessary modification. Specifically, we first establish the linear instability of the line solitary waves. Then through an approximation procedure, we prove that the linear effect actually dominates the nonlinear behavior.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse Instability of the CH-KP-I Equation\",\"authors\":\"R. Chen, Jie Jin\",\"doi\":\"10.4208/aam.oa-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Camassa–Holm–Kadomtsev–Petviashvili-I equation (CH-KP-I) is a two dimensional generalization of the Camassa–Holm equation (CH). In this paper, we prove transverse instability of the line solitary waves under periodic transverse perturbations. The proof is based on the framework of [18]. Due to the high nonlinearity, our proof requires necessary modification. Specifically, we first establish the linear instability of the line solitary waves. Then through an approximation procedure, we prove that the linear effect actually dominates the nonlinear behavior.\",\"PeriodicalId\":58853,\"journal\":{\"name\":\"应用数学年刊:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学年刊:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4208/aam.oa-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.oa-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Camassa–Holm–Kadomtsev–Petviashvili-I方程(CH-KP-I)是Camassa-Holm方程(CH)的二维推广。在本文中,我们证明了在周期性横向扰动下线性孤立波的横向不稳定性。该证明基于[18]的框架。由于高非线性,我们的证明需要必要的修改。具体来说,我们首先建立了线性孤立波的线性不稳定性。然后通过近似过程,我们证明了线性效应实际上支配着非线性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse Instability of the CH-KP-I Equation
The Camassa–Holm–Kadomtsev–Petviashvili-I equation (CH-KP-I) is a two dimensional generalization of the Camassa–Holm equation (CH). In this paper, we prove transverse instability of the line solitary waves under periodic transverse perturbations. The proof is based on the framework of [18]. Due to the high nonlinearity, our proof requires necessary modification. Specifically, we first establish the linear instability of the line solitary waves. Then through an approximation procedure, we prove that the linear effect actually dominates the nonlinear behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
544
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信