Reda M. Mansour, Sherif S. Abdel Mageed, Ahmed I. Abulsoud, Ghadir A Sayed, Radwa H. Lutfy, Farah A. Awad, Mohamed M. Sadek, Abanoub A. S. Shaker, Osama A. Mohammed, Mustafa Ahmed Abdel-Reheim, Hanan Elimam, Ahmed S. Doghish
{"title":"From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH","authors":"Reda M. Mansour, Sherif S. Abdel Mageed, Ahmed I. Abulsoud, Ghadir A Sayed, Radwa H. Lutfy, Farah A. Awad, Mohamed M. Sadek, Abanoub A. S. Shaker, Osama A. Mohammed, Mustafa Ahmed Abdel-Reheim, Hanan Elimam, Ahmed S. Doghish","doi":"10.1007/s10142-025-01544-x","DOIUrl":"10.1007/s10142-025-01544-x","url":null,"abstract":"<div><p>Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH. In the current review, the latest development concerned with the activity of complex regulatory networks of miRNA in the incidence as well as the evolution of NAFLD is to be discussed, also conferring about the miRNAs’ role in the onset, pathogenesis as well as diagnosis of NAFLD and NASH discussing miRNAs’ role as diagnostic biomarkers and their therapeutic effects on NAFLD/NASH.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tosca A. van Gelderen, Pinky Debnath, Silvia Joly, Edgar Bertomeu, Neil Duncan, Dolors Furones, Laia Ribas
{"title":"Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response","authors":"Tosca A. van Gelderen, Pinky Debnath, Silvia Joly, Edgar Bertomeu, Neil Duncan, Dolors Furones, Laia Ribas","doi":"10.1007/s10142-025-01537-w","DOIUrl":"10.1007/s10142-025-01537-w","url":null,"abstract":"<div><p>Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (<i>Dicentrarchus labrax</i>), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with <i>Vibrio anguillarum</i>. The findings indicate that following infection, testes exhibited more pronounced alterations in both the miRNome and transcriptome. Specifically, males showed approximately 26% more differentially expressed genes in testicular genes compared to females (2,624 vs. 101 DEGs). Additionally, four miRNAs (miR-183-5p, miR-191-3p, miR-451-5p, and miR-724-5p) were significantly expressed post-infection in males, while none were identified in females. Interestingly, upon deep analysis of sexual dimorphic gene modules, a larger number of miRNAs were identified in infected females targeting genes related to the immune system compared to infected males. These results suggest that fish ovaries demonstrate greater resilience in response to infections by suppressing genes related to the immune system through a post-transcriptional mechanism performed by miRNAs. In contrast, testes activate genes related to the immune system and repress genes related to cellular processes to cope with the infection. In particular, the crosstalk between the miRNome and transcriptome in infected males revealed a pivotal gene, namely, insulin-like growth factor binding protein (<i>igfbp</i>), acting as a gene network hub in which miR-192-3p was connected. The current study elucidated the need to comprehend the basic immune regulatory responses associated with miRNAs and gene regulation networks that depend on fish sex. The data reveal the importance of considering sex as a factor in interpreting the immune system in fish to generate efficient protocols to prevent outbreaks in fish farms.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Yang, Youfu He, Ling Zhao, Jing Huang, Fawang Du, Shui Tian, Yang Zhang, Xinghui Liu, Baolin Chen, Junhua Ge, Zhi Jiang
{"title":"Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription","authors":"Fan Yang, Youfu He, Ling Zhao, Jing Huang, Fawang Du, Shui Tian, Yang Zhang, Xinghui Liu, Baolin Chen, Junhua Ge, Zhi Jiang","doi":"10.1007/s10142-024-01515-8","DOIUrl":"10.1007/s10142-024-01515-8","url":null,"abstract":"<div><p>Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood. We tested the hypothesis that leptin improves cardiac function after myocardial infarction via enhancing glucose metabolism. In the isoproterenol (ISO)-induced heart failure model in vitro, H9c2 cell apoptosis was assessed by the TUNEL and Annexin V/PI staining assay. Leptin-mediated mitochondrial fusion was performed via TEM, and glucose oxidation was explored, as well as the ECAR, OCR, and protein expression of the vital metabolic enzymes. By blocking OPA1 expression or HDAC5 inhibition, the mitochondrial dynamic and glucose metabolic were detected to evaluate the role of OPA1 and HDAC5 in leptin-stimulated glucose metabolism. In the mouse model of HF in vivo, intraperitoneal leptin administration appreciably increased glucose oxidation and preserved cardiac function 56 days after coronary artery ligation. In vitro, we identified the OPA1-dependent HDAC5 nucleus export as a crucial process in boosting glucose utilization by activating MEF2 to upregulate Glut4 expression using the RNA interference technique in H9c2 cells. In vivo, leptin promotes glucose utilization and confers heart functional and survival benefits in chronic ischemic HF. The current study provided a novel insight into the role of leptin in metabolic reprogramming and revealed potential therapeutic targets for chronic HF.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transforming tomatoes into GABA-rich functional foods through genome editing: A modern biotechnological approach","authors":"Kausalya Sakthivel, Rajagopal Balasubramanian, Vellaikumar Sampathrajan, Ravichandran Veerasamy, Sathiyamurthy V. Appachi, Kumar K.K","doi":"10.1007/s10142-025-01538-9","DOIUrl":"10.1007/s10142-025-01538-9","url":null,"abstract":"<div><p>Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.07 to 2.01 mg g<sup>−1</sup> FW), it needs to be further enhanced to fully impart its potential health benefits. Achieving this feat through classical breeding approaches is time and resource consuming, and is also associated with linkage drag. On the other hand, precise targeting of specific sites in the genome with less off- target effects is mediated by CRISPR/Cas9 genome editing tool and is widely used to overcome the barriers associated with traditional breeding approaches. Combining genome editing with speed breeding techniques can enable the rapid development of GABA-rich tomato cultivars, paving a way to unlock a new era of functional foods, where every bite contributes to cognitive well-being and holistic health. This review highlights the significance of GABA boosted functional foods and explores the potential of CRISPR/Cas9 technology for developing GABA enriched tomatoes.\u0000</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondria and its epigenetic dynamics: Insight into synaptic regulation and synaptopathies","authors":"Shiwangi Gupta, Abhinoy Kishore, Vikas Rishi, Aanchal Aggarwal","doi":"10.1007/s10142-025-01530-3","DOIUrl":"10.1007/s10142-025-01530-3","url":null,"abstract":"<div><p>Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca<sup>2+</sup>) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca<sup>2+</sup> homeostasis to prevent excitotoxicity and support synaptic neurotransmission. Additionally, the dynamic processes of mitochondria ensure mitochondrial quality and adaptability, which are essential for maintaining effective synaptic activity. Emerging evidence highlights the significant role of epigenetic modifications in regulating mitochondrial dynamics and function. Epigenetic changes influence gene expression, which in turn affects mitochondrial activity, ensuring coordinated responses necessary for synapse development. Furthermore, metabolic changes within mitochondria can impact the epigenetic machinery, thereby modulating gene expression patterns that support synaptic integrity. Altered epigenetic regulation affecting mitochondrial dynamics and functions is linked to several neurological disorders, including Amyotrophic Lateral Sclerosis, Huntington’s, Alzheimer’s, and Parkinson’s diseases, emphasizing its crucial function. The review delves into the molecular machinery involved in mitochondrial dynamics, ATP and Ca<sup>2+</sup> regulation, highlighting the role of key proteins that facilitate the processes. Additionally, it also shed light on the emerging epigenetic factors influencing these regulations. It provides a thorough summary on the current understanding of the role of mitochondria in synapse development and emphasizes the importance of both molecular and epigenetic mechanisms in maintaining synaptic integrity.</p><h3>Graphical abstract </h3><p><b>Effect of epigenetic regulation on mitochondrial processes that assist synapse development:</b> This figure illustrates the intricate interplay between mitochondrial dynamics, bioenergetics, and epigenetic regulation, all of which are essential for synaptic function. A) Mitochondrial fission, driven by dynamin-related protein 1 (Drp1) and K-Ras, and C) Fusion, mediated by mitochondrial fusion protein 1 and 2 (Mfn1, Mfn2) and optic nerve atrophy 1 (Opa1), work together to maintain mitochondrial integrity and function. B) Biogenesis, regulated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mechanistic target of rapamycin (mTOR), and transcription factors, alongside mitophagy involving PARKIN, PTEN-induced kinase 1 (PINK1), and BCL2-interacting protein 3 (BNIP3), ensures mitochondrial quality control and adaptation. D) The tricarboxylic acid (TCA) cycle drives the production of electron don","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kurt Sartorius, Yanglong Wang, Benn Sartorius, Samuel O. Antwi, Xiaodong Li, Anil Chuturgoon, Chongyuan Yu, Yunjie Lu, Yu Wang
{"title":"The interactive role of microRNA and other non-coding RNA in hepatitis B (HBV) associated fibrogenesis","authors":"Kurt Sartorius, Yanglong Wang, Benn Sartorius, Samuel O. Antwi, Xiaodong Li, Anil Chuturgoon, Chongyuan Yu, Yunjie Lu, Yu Wang","doi":"10.1007/s10142-024-01519-4","DOIUrl":"10.1007/s10142-024-01519-4","url":null,"abstract":"<div><p>One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression. Although extensive research has explained the regulatory role of ncRNA in liver fibrogenesis, most of this research relates to non-CHB etiologies. This review paper outlines the complex interactive regulatory role of microRNA (miRNA) and their interaction with long non-coding RNA (lncRNA), circular RNA (circRNA) and the mainstream epigenetic machinery in CHB induced liver fibrosis. The paper also illustrates some of the difficulties involved in translating candidate ncRNA into approved drugs or diagnostic tools. In conclusion, the important regulatory role of ncRNA in CHB induced liver fibrosis warrants further investigation to exploit their undoubted potential as diagnostic and therapeutic agents.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heterogeneity analysis and prognostic model construction of HPV negative oral squamous cell carcinoma T cells using ScRNA-seq and bulk-RNA analysis","authors":"Chunyan Li, Zengbo Lv, Chongxin Li, Shixuan Yang, Feineng Liu, Tengfei Zhang, Lin Wang, Wen Zhang, Ruoyu Deng, Guoyu Xu, Huan Luo, Yinhong Zhao, Jialing Lv, Chao Zhang","doi":"10.1007/s10142-024-01525-6","DOIUrl":"10.1007/s10142-024-01525-6","url":null,"abstract":"<div><h3>Background</h3><p>T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.</p><h3>Methods</h3><p>We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets. We performed cell‒cell communication, trajectory, and pathway enrichment analyses of T-cell-associated genes. In addition, we constructed and validated a T-cell-associated gene prognostic model for HPV-negative OSCC patients using TCGA and GEO data and assessed the immune infiltration status of HPV-negative OSCC patients .qRT-PCR was used to detect the expression level of prognosis-related genes in different risk groups.</p><h3>Results</h3><p>ScRNA-seq was conducted on 28,000 cells derived from 14 HPV-negative OSCC samples and 6 normal samples. We identified 4,635 T cells from these cells and identified 774 differentially expressed genes(DEGs) associated with T cells across five distinct T-cell subtypes. Through the integration of bulk-RNAseq data, we established a prognostic model based on DEGs related to T cells. By separating patients into high-risk and low-risk groups according to these prognostic related genes, we can accurately predict their survival rates and the immune infiltration status of the TME.qRT-PCR results showed that compared with the patients of low risk group, the expression of PMEPA1, SH2D2A, SMS and PRDX4 were significantly up-regulated in high risk group.</p><h3>Conclusion</h3><p>This study provides a resource for understanding the heterogeneity of T cells in HPV-negative OSCC patients and associated prognostic risk models. It provides new insights for predicting survival and level of immune infiltration in patients with HPV-negative OSCC.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of nanoparticles in transforming plant genetic engineering: advancements, challenges and future prospects","authors":"Neelam Rani, Kusum Kumari, Vinita Hooda","doi":"10.1007/s10142-025-01528-x","DOIUrl":"10.1007/s10142-025-01528-x","url":null,"abstract":"<div><p>Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research. Traditional approaches like <i>Agrobacterium-</i>mediated transformation, biolistic particle delivery, electroporation and polyethylene glycol (PEG) transformation have shown some success but come with limitations like laborious, time-consuming and causing tissue damage. For instance, the <i>Agrobacterium</i> method can be applied only to the restricted host range, while PEG transformation and biolistic particle delivery are not very efficient. In contrast, nanotechnology made an appearance in the field of genetic engineering. Nanoparticles act as delivery vehicles for many cargos in animals. However, in plants, the application of nanocarriers for the delivery of biomolecules is still in its infant stage. Nonetheless, it holds immense potential for the future of plant biotechnology and genome editing.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dipali Barku Dongare, Shaik Shireen Nishad, Sakshi Y. Mastoli, Shubhini A. Saraf, Nidhi Srivastava, Abhishek Dey
{"title":"High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine","authors":"Dipali Barku Dongare, Shaik Shireen Nishad, Sakshi Y. Mastoli, Shubhini A. Saraf, Nidhi Srivastava, Abhishek Dey","doi":"10.1007/s10142-025-01529-w","DOIUrl":"10.1007/s10142-025-01529-w","url":null,"abstract":"<div><p>High-resolution insights into the nucleotide arrangement within an organism’s genome are pivotal for deciphering its genetic composition, function, and evolutionary trajectory. Over the years, nucleic acid sequencing has been instrumental in driving significant advancements in genomics and molecular biology. The advent of high-throughput or next-generation sequencing (NGS) technologies has revolutionized whole genome sequencing, revealing novel and intriguing features of genomes, such as single nucleotide polymorphisms and lethal mutations in both coding and non-coding regions. These platforms provide a practical approach to comprehensively identifying and analyzing whole genomes with remarkable throughput, accuracy, and scalability within a short time frame. The resulting data holds immense potential for enhancing healthcare systems, developing novel and personalized therapies, and preparing for future pandemics and outbreaks. Given the wide array of available high-throughput sequencing platforms, selecting the appropriate technology based on specific needs is crucial. However, there is limited information regarding sample preparation, sequencing principles, and output data to facilitate a comparative evaluation of these platforms. This review details various NGS technologies and approaches, examining their advantages, limitations, and future potential. Despite being in their early stages and facing challenges, ongoing advancements in NGS are expected to yield significant future benefits. </p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of the rhizospheric soil bacteriomes of Oryza sativa and Solanum melongena crop cultivars reveals key genes and pathways involved in biosynthesis of ectoine, lysine, and catechol meta-cleavage","authors":"Manisha Mandal, Biswajit Ghosh, Shyamapada Mandal","doi":"10.1007/s10142-025-01536-x","DOIUrl":"10.1007/s10142-025-01536-x","url":null,"abstract":"<div><p>Rice (<i>Oryza sativa</i> L.), <i>Poaceae</i> family, forms staple diet of half of world’s population, and brinjal (<i>Solanum melongena</i> L.), an important solanaceous crop, are consumed worldwide. Rhizosphere research is gaining importance towards application of knowledge for improving productivity, sustainable agricultural practice, and rhizoremediation for nature restoration. While there are reports on rhizobacteriome of rice, studies comparing structural, functional and metabolomic traits of microbial communities in rhizospheres of rice and brinjal are not yet available. We demonstrated, in <i>Oryza sativa</i> (1144-Hybrid, Dhiren, Local Saran cultivars) and <i>Solanum melongena</i> (Jhiloria, Chandtara, Jotshna cultivars) rhizospheres from Malda, India, using integrated approach of 16 S ribosomal sequencing, shotgun metagenomics, and microbial metabolomics to decipher microbial diversity, association with soil physicochemical characteristics, key genes and pathways. Ectoine biosynthesis was significantly expressed in brinjal (Jhiloria), but not in rice rhizosphere. The dominant brinjal rhizobacteriome-specific bacteria comprised <i>Thermus</i> sp., <i>Petrobacter succinatimandens</i>, <i>Thermoanaerobacter</i> sp., and <i>Diaphorobacter</i> sp., that were involved in house-keeping functions including pentose phosphate pathway, biosynthesis of amino acids, lipopolysaccharide, and photosynthesis. The dominant bacteria unique to rice rhizobacteriome (Local Saran) consisted of <i>Aeromonas</i> sp., associated with catechol meta-cleavage, while <i>Clostridium</i> sp., <i>Faecalibacterium prausnitzii</i>, and <i>Roseburia</i> sp. were involved with lysine biosysnthesis in rice (1144-Hybrid). Our results imply novel information for improved breeding of brinjal specific cultivar with enhanced ectoine production associated with osmotic stress tolerance, rice specific cultivars with enhanced lysine production significant to human nutrition and catechol removal for the maintenance of environmental quality.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}