Functional & Integrative Genomics最新文献

筛选
英文 中文
Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects 利用 CRISPR-dCas9 技术靶向癌症表观遗传学的进展:全面回顾与未来展望
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-18 DOI: 10.1007/s10142-024-01455-3
Jeevitha Rajanathadurai, Elumalai Perumal, Jospin Sindya
{"title":"Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects","authors":"Jeevitha Rajanathadurai,&nbsp;Elumalai Perumal,&nbsp;Jospin Sindya","doi":"10.1007/s10142-024-01455-3","DOIUrl":"10.1007/s10142-024-01455-3","url":null,"abstract":"<div><p>Cancer, a complex and multifaceted group of diseases, continues to challenge the boundaries of medical science and healthcare. Its relentless impact on global health, both in terms of prevalence and mortality, underscores the urgent need for a comprehensive understanding of its underlying mechanisms and innovative therapeutic approaches. In recent years, significant progress has been achieved in identifying the genetic and epigenetic mechanisms that cause cancer development and treatment resistance. Researchers are currently investigating the possibility of epigenetic editing such as CRISPR-dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats/deactivated CRISPR-associated protein 9) technologies, for targeting and modifying cancer related epigenetic alterations. A revolutionary form of precision cancer treatment called CRISPR-dCas9 is derived from the bacterial CRISPR-Cas (CRISPR-associated nuclease) system. CRISPR-dCas9 can be combined with epigenetic effectors (EE) to alter malignant epigenetic characteristics associated with cancer. The purpose of this review article is to provide a thorough analysis of recent advancements in utilizing CRISPR-dCas9 technology to target and modify epigenetic changes associated with cancer. This review aims to summarize the latest research developments, evaluate the effectiveness and limitations of CRISPR-dCas9 applications in cancer therapy, identify key challenges such as delivery methods and explore future directions for improving and expanding these technologies. Here, we address the various obstacles that may arise in clinical applications while showcasing the latest advancements and potential future uses of CRISPR-Cas9 in cancer therapy.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tet1-mediated activation of the Ampk signaling by Trpv1 DNA hydroxymethylation exerts neuroprotective effects in a rat model of Parkinson’s disease 在帕金森病大鼠模型中,Tet1 通过 Trpv1 DNA 羟甲基化介导的 Ampk 信号激活具有神经保护作用
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-17 DOI: 10.1007/s10142-024-01446-4
Yu Fan, Po Wang, Changchun Jiang, Jinyu Chen, Meili Zhao, Jiahui Liu
{"title":"Tet1-mediated activation of the Ampk signaling by Trpv1 DNA hydroxymethylation exerts neuroprotective effects in a rat model of Parkinson’s disease","authors":"Yu Fan,&nbsp;Po Wang,&nbsp;Changchun Jiang,&nbsp;Jinyu Chen,&nbsp;Meili Zhao,&nbsp;Jiahui Liu","doi":"10.1007/s10142-024-01446-4","DOIUrl":"10.1007/s10142-024-01446-4","url":null,"abstract":"<div><p>Epigenetic regulation plays a role in Parkinson’s disease (PD), and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) catalyzes the first step in DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine. We investigated whether TET1 binds to the promoter of the transient receptor potential cation channel subfamily V member 1 (TRPV1) and regulates its expression, thereby controlling oxidative stress in PD. TRPV1 was identified as an oxidative stress-associated gene in the GSE20186 dataset including substantia nigra from 14 patients with PD and 14 healthy controls and the Genecards database. Lentiviral vectors were used to manipulate Trpv1 expression in rats, followed by 6-hydroxydopamine hydrochloride (6-OHDA) injection for modeling. Behavioral tests, immunofluorescence, Nissl staining, western blot assays, DHE fluorescent probe, biochemical analysis, and ELISA were conducted to assess oxidative stress and neurotoxicity. Trpv1 expression was significantly reduced in the brain tissues of 6-OHDA-treated Parkinsonian rats. Trpv1 alleviated behavioral dysfunction, oxidative stress, and dopamine neuron loss in rats. TET1 mediated TRPV1 hydroxymethylation to promote its expression, and Trpv1 inhibition reversed the mitigating effect of Tet1 on oxidative stress and behavioral dysfunction in PD. TRPV1 activated the AMPK signaling by promoting AMPK phosphorylation to alleviate neurotoxicity and oxidative stress in SH-SY5Y cells. Tet1-mediated Trpv1 hydroxymethylation modification promotes the Ampk signaling activation, thereby eliciting neuroprotection in 6-OHDA-treated Parkinsonian rats. These findings provide experimental evidence that targeting the TET1/TRPV1 axis may be neuroprotective for PD by acting on the AMPK signaling.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA XIST/miR-455-3p/HOXC4 axis promotes breast cancer development by activating TGF-β/SMAD signaling pathway LncRNA XIST/miR-455-3p/HOXC4轴通过激活TGF-β/SMAD信号通路促进乳腺癌发展
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-12 DOI: 10.1007/s10142-024-01442-8
Shanshan Zhao, Chen Song, Fengxi Chen, Man Li
{"title":"LncRNA XIST/miR-455-3p/HOXC4 axis promotes breast cancer development by activating TGF-β/SMAD signaling pathway","authors":"Shanshan Zhao,&nbsp;Chen Song,&nbsp;Fengxi Chen,&nbsp;Man Li","doi":"10.1007/s10142-024-01442-8","DOIUrl":"10.1007/s10142-024-01442-8","url":null,"abstract":"<div><p>Breast cancer is the second primary cause of cancer death among women. Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is a central regulator for X chromosome inactivation, and its abnormal expression is a primary feature of breast cancer. So far, the mechanism of XIST in breast cancer has not been fully elucidated. We attempted to illustrate the mechanism of XIST in breast cancer. The expressions of XIST, microRNA-455-3p (miR-455-3p) in breast cancer were measured using quantitative real-time PCR. The expressions of homeobox C4 (HOXC4) were assessed with immunohistochemical and Western blot. Also, the functions of XIST in breast cancer were assessed by Cell Counting Kit-8 analysis, colony formation assay, flow cytometry, Western blot, Transwell, and cell scratch assays. Meanwhile, the mechanism of XIST in breast cancer was validated using database analysis and dual-luciferase reporter assay. Furthermore, the function of XIST in breast cancer in vivo was estimated by tumor xenograft model, immunohistochemical assay, and hematoxylin-eosin staining. XIST and HOXC4 expressions were increased, but miR-455-3p expressions were decreased in breast cancer tissues and cells. Knocking down XIST restrained breast cancer cell proliferation, invasion, migration, epithelial-mesenchymal transformation (EMT), and induced cell cycle arrest at G0/G1. Meanwhile, XIST interacted with miR-455-3p, while miR-455-3p interacted with HOXC4. XIST knockdown repressed breast cancer cell proliferation, invasion, and EMT, while miR-455-3p inhibitor or HOXC4 overexpression abolished those impacts. HOXC4 overexpression also blocked the impacts of miR-455-3p mimic on breast cancer cell malignant behavior. In vivo experimental data further indicated that XIST knockdown repressed breast cancer cell tumorigenic ability, and decreased HOXC4 and p-SMAD3 (TGF-β/SMAD-related protein) expressions.XIST/miR-455-3p/HOXC4 facilitated breast cancer development by activating the TGF-β/SMAD pathway.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>XIST/miR-455-3p/HOXC4 axis promotes breast cancer development by activating TGF-β/SMAD signaling pathway</p></div></div></figure></div></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis 探索转录起始位点和其他基因组特征有助于准确识别和注释结核分枝杆菌在多种压力条件下的小 RNA
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-12 DOI: 10.1007/s10142-024-01437-5
Hong-Leong Cheah, Marimuthu Citartan, Li-Pin Lee, Siti Aminah Ahmed, Mohd Zaki Salleh, Lay Kek Teh, Thean-Hock Tang
{"title":"Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis","authors":"Hong-Leong Cheah,&nbsp;Marimuthu Citartan,&nbsp;Li-Pin Lee,&nbsp;Siti Aminah Ahmed,&nbsp;Mohd Zaki Salleh,&nbsp;Lay Kek Teh,&nbsp;Thean-Hock Tang","doi":"10.1007/s10142-024-01437-5","DOIUrl":"10.1007/s10142-024-01437-5","url":null,"abstract":"<div><p><i>Mycobacterium tub</i><i>erculosis</i> (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5’UTRs, 3’UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the <i>M. tuberculosis</i> H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5’UTR-derived sRNAs, 3’UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3’-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma 长非编码 RNA MAGEA4-AS1 与 p53 结合可增强 MK2 信号通路,促进口腔鳞状细胞癌的增殖和转移。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-09 DOI: 10.1007/s10142-024-01436-6
Xiaoxiao Wei, Zhangfu Li, Heng Zheng, Xiaolian Li, Yuntao Lin, Hongyu Yang, Yuehong Shen
{"title":"Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma","authors":"Xiaoxiao Wei,&nbsp;Zhangfu Li,&nbsp;Heng Zheng,&nbsp;Xiaolian Li,&nbsp;Yuntao Lin,&nbsp;Hongyu Yang,&nbsp;Yuehong Shen","doi":"10.1007/s10142-024-01436-6","DOIUrl":"10.1007/s10142-024-01436-6","url":null,"abstract":"<div><p>Long non-coding RNAs (lncRNAs) regulate the occurrence, development and progression of oral squamous cell carcinoma (OSCC). We elucidated the expression features of MAGEA4-AS1 in patients with OSCC and its activity as an OSCC biomarker. Furthermore, the impact of up-regulation of MAGEA4-AS1 on the cellular behaviors (proliferation, migration and invasion) of OSCC cells and intrinsic signal mechanisms were evaluated. Firstly, we analyzed MAGEA4-AS1 expression data in The Cancer Genome Atlas (TCGA) OSCC using a bioinformatics approach and in 45 pairs of OSCC tissues using qPCR. Then CCK-8, ethynyl deoxyuridine, colony formation, transwell and wound healing assays were conducted to assess changes in the cell proliferation, migration and invasion protential of shMAGEA4-AS1 HSC3 and CAL27 cells. The RNA sequence of MAGEA4-AS1 was identified using the rapid amplification of cDNA ends (RACE) assay. And whole-transcriptome sequencing was used to identify MAGEA4-AS1 affected genes. Additionally, dual-luciferase reporter system, RNA-binding protein immunoprecipitation (RIP), and rescue experiments were performed to clarify the role of the MAGEA4-AS1-p53-MK2 signaling pathway. As results, we found MAGEA4-AS1 was up-regulated in OSCC tissues. We identified a 418 nucleotides length of the MAGEA4-AS1 transcript and it primarily located in the cell nucleus. MAGEA4-AS1 stable knockdown weakened the proliferation, migration and invasion abilities of OSCC cells. Mechanistically, p53 protein was capable to activate MK2 gene transcription. RIP assay revealed an interaction between p53 and MAGEA4-AS1. MK2 up-regulation in MAGEA4-AS1 down-regulated OSCC cells restored MK2 and epithelial-to-mesenchymal transition related proteins’ expression levels. In conclusion, MAGEA4-AS1-p53 complexes bind to MK2 promoter, enhancing the transcription of MK2 and activating the downstream signaling pathways, consequently promoting the proliferation and metastasis of OSCC cells. MAGEA4-AS1 may serve as a diagnostic marker and therapeutic target for OSCC patients.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AC092100.1 promotes angiogenesis in pre-eclampsia through YTHDC2/VEGFA signaling AC092100.1 通过 YTHDC2/VEGFA 信号传导促进先兆子痫的血管生成。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-06 DOI: 10.1007/s10142-024-01428-6
Wenjing Yong, Yu Jian, Qi Wang, Kuilin Fei, Ping Li
{"title":"AC092100.1 promotes angiogenesis in pre-eclampsia through YTHDC2/VEGFA signaling","authors":"Wenjing Yong,&nbsp;Yu Jian,&nbsp;Qi Wang,&nbsp;Kuilin Fei,&nbsp;Ping Li","doi":"10.1007/s10142-024-01428-6","DOIUrl":"10.1007/s10142-024-01428-6","url":null,"abstract":"<div><p>Aberrant long non-coding RNA (lncRNA) expression has been shown to be involved in the pathological process of pre-eclampsia (PE), yet only a small portion of lncRNAs has been characterized concerning the function and molecular mechanisms involved in PE. This study aimed to investigate the regulatory mechanism of the lncRNA AC092100.1 (AC092100.1) in angiogenesis in PE. In our study, bioinformatics analysis was performed to screen for differentially expressed lncRNAs between normal subjects and PE patients. The levels of AC092100.1 in placental tissues of patients with or without PE were validated using qRT-PCR. The effect of AC092100.1 overexpression on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) was investigated. The binding of AC092100.1 and YT521-B homology domain-containing 2 (YTHDC2) was predicted and verified. The effect of AC092100.1/YTHDC2 on the expression of vascular endothelial growth factor-A (VEGFA) in HUVECs was determined. Finally, a PE mice model was conducted. Fetal mouse growth, the abundance of mesenchymal morphology markers, including hypoxia-inducible factor 1-alpha (HIF-1α), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), Slug, and Vimentin, and endothelial markers, including placental growth factor (PLGF), CD31, and vascular endothelial (VE)-cadherin, in placental tissues were assessed. Here, we found that AC092100.1 was abnormally downregulated in placental tissues from PE patients. We established that AC092100.1 overexpression promoted HUVEC proliferation, migration, and tube formation in vitro. Mechanistically, AC092100.1 induced the accumulation of YTHDC2 and VEGFA through binding to YTHDC2 in HUVECs. Inhibition of YTHDC2 or VEGFA reversed AC092100.1-promoted tube formation. AC092100.1 overexpression contributed to alleviating fetal growth disorder, decreased levels of sEng, HIF-1α, sFlt-1, Slug, and Vimentin, and increased levels of VEGFA, PLGF, CD31, and VE-cadherin in PE mice. Our findings provided evidence supporting the role of the AC092100.1/YTHDC2/VEGFA axis in regulating angiogenesis, which demonstrated a therapeutic pathway for PE targeting angiogenesis.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotechnological frontiers in harnessing allelopathy for sustainable crop production 利用等位基因促进可持续作物生产的生物技术前沿。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-04 DOI: 10.1007/s10142-024-01418-8
Nazish Akhtar, Mo Shadab, Nourien Bhatti, Moh Sajid Ansarì, M. B. Siddiqui
{"title":"Biotechnological frontiers in harnessing allelopathy for sustainable crop production","authors":"Nazish Akhtar,&nbsp;Mo Shadab,&nbsp;Nourien Bhatti,&nbsp;Moh Sajid Ansarì,&nbsp;M. B. Siddiqui","doi":"10.1007/s10142-024-01418-8","DOIUrl":"10.1007/s10142-024-01418-8","url":null,"abstract":"<div><p>Allelopathy, the phenomenon in which plants release biochemical compounds that influence the growth and development of neighbouring plants, presents promising opportunities for revolutionizing agriculture towards sustainability. This abstract explores the role of biotechnological advancements in unlocking the potential of allelopathy for sustainable crop production and its applications in agriculture, ecology, and natural resource management. By combining molecular, genetic, biochemical, and bioinformatic tools, researchers can unravel the complexities of allelopathic interactions and their potential for sustainable crop production and environmental stewardship. The development of novel management methods for weed control is getting a lot of attention with the introduction of new genetic technologies such as Gene drive, Transgene technologies, Gene silencing, Marker-assisted selection (MAS), and Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9). By strengthening competitive characteristics these tools hold great promise for boosting crops’ ability to compete with weeds. Considering recent literature, this review highlights the genetic, transcriptomics, and metabolomics approaches to allelopathy. Employing allelopathic properties in agriculture offer sustainable benefits like natural weed management, pest management, and reduced chemical pollution, but challenges include environmental factors, toxicity, regulatory hurdles, and limited resources. Effective integration requires continued research, regulatory support, and farmer education​. Also, we aimed to identify the biotechnological domains requiring more investigation and to provide the basis for future advances through this assessment.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative analyses of long and short-read RNA sequencing reveal the spliced isoform regulatory network of seedling growth dynamics in upland cotton 长短线程 RNA 测序的综合分析揭示了陆地棉幼苗生长动态的剪接同工酶调控网络。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-04 DOI: 10.1007/s10142-024-01420-0
Kashif Shahzad, Meng Zhang, Iqra Mubeen, Xuexian Zhang, Liping Guo, Tingxiang Qi, Juanjuan Feng, Huini Tang, Xiuqin Qiao, Jianyong Wu, Chaozhu Xing
{"title":"Integrative analyses of long and short-read RNA sequencing reveal the spliced isoform regulatory network of seedling growth dynamics in upland cotton","authors":"Kashif Shahzad,&nbsp;Meng Zhang,&nbsp;Iqra Mubeen,&nbsp;Xuexian Zhang,&nbsp;Liping Guo,&nbsp;Tingxiang Qi,&nbsp;Juanjuan Feng,&nbsp;Huini Tang,&nbsp;Xiuqin Qiao,&nbsp;Jianyong Wu,&nbsp;Chaozhu Xing","doi":"10.1007/s10142-024-01420-0","DOIUrl":"10.1007/s10142-024-01420-0","url":null,"abstract":"<div><p>The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced <i>GI</i> isoform <i>Gh_A02G0645_N17</i> significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene <i>ELF</i> in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing soybean genomics: How CRISPR and advanced sequencing are unlocking new potential 大豆基因组学的革命:CRISPR 和先进测序技术如何释放新潜力。
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-03 DOI: 10.1007/s10142-024-01435-7
Muhammad Khuram Razzaq, Muhammad Naveed Babur, Muhammad Jawad Akbar Awan, Ghulam Raza, Mehwish Mobeen, Ali Aslam, Kadambot H. M. Siddique
{"title":"Revolutionizing soybean genomics: How CRISPR and advanced sequencing are unlocking new potential","authors":"Muhammad Khuram Razzaq,&nbsp;Muhammad Naveed Babur,&nbsp;Muhammad Jawad Akbar Awan,&nbsp;Ghulam Raza,&nbsp;Mehwish Mobeen,&nbsp;Ali Aslam,&nbsp;Kadambot H. M. Siddique","doi":"10.1007/s10142-024-01435-7","DOIUrl":"10.1007/s10142-024-01435-7","url":null,"abstract":"<div><p>Soybean <i>Glycine max</i> L., paleopolyploid genome, poses challenges to its genetic improvement. However, the development of reference genome assemblies and genome sequencing has completely changed the field of soybean genomics, allowing for more accurate and successful breeding techniques as well as research. During the single-cell revolution, one of the most advanced sequencing tools for examining the transcriptome landscape is single-cell RNA sequencing (scRNA-seq). Comprehensive resources for genetic improvement of soybeans may be found in the SoyBase and other genomics databases. CRISPR-Cas9 genome editing technology provides promising prospects for precise genetic modifications in soybean. This method has enhanced several soybean traits, including as yield, nutritional value, and resistance to both biotic and abiotic stresses. With base editing techniques that allow for precise DNA modifications, the use of CRISPR-Cas9 is further increased. With the availability of the reference genome for soybeans and the following assembly of wild and cultivated soybeans, significant chromosomal rearrangements and gene duplication events have been identified, offering new perspectives on the complex genomic structure of soybeans. Furthermore, major single nucleotide polymorphisms (SNPs) linked to stachyose and sucrose content have been found through genome-wide association studies (GWAS), providing important tools for enhancing soybean carbohydrate profiles. In order to open up new avenues for soybean genetic improvement, future research approaches include investigating transcriptional divergence processes, enhancing genetic resources, and incorporating CRISPR-Cas9 technologies.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microproteins unveiling new dimensions in cancer 微蛋白揭示癌症新领域
IF 3.9 4区 生物学
Functional & Integrative Genomics Pub Date : 2024-09-03 DOI: 10.1007/s10142-024-01426-8
S. Daisy Precilla, Indrani Biswas, T. S. Anitha, B. Agieshkumar
{"title":"Microproteins unveiling new dimensions in cancer","authors":"S. Daisy Precilla,&nbsp;Indrani Biswas,&nbsp;T. S. Anitha,&nbsp;B. Agieshkumar","doi":"10.1007/s10142-024-01426-8","DOIUrl":"10.1007/s10142-024-01426-8","url":null,"abstract":"<div><p>In the complex landscape of cancer biology, the discovery of microproteins has triggered a paradigm shift, thereby, challenging the conventional conceptions of gene regulation. Though overlooked for years, these entities encoded by the small open reading frames (100–150 codons), have a significant impact on various cellular processes. As precision medicine pioneers delve deeper into the genome and proteome, microproteins have come into the limelight. Typically characterized by a single protein domain that directly binds to the target protein complex and regulates their assembly, these microproteins have been shown to play a key role in fundamental biological processes such as RNA processing, DNA repair, and metabolism regulation. Techniques for identification and characterization, such as ribosome profiling and proteogenomic approaches, have unraveled unique mechanisms by which these microproteins regulate cell signaling or pathological processes in most diseases including cancer. However, the functional relevance of these microproteins in cancer remains unclear. In this context, the current review aims to “rethink the essence of these genes” and explore “how these hidden players-microproteins orchestrate the signaling cascades of cancer, both as accelerators and brakes.”.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信