光:先进制造(英文)Pub Date : 2022-01-01DOI: 10.37188/lam.2022.032
Mingyu Yang, K. Kowsari, Nia O. Myrie, Daniela Espinosa-Hoyos, A. Jagielska, Seok Kim, N. Fang, K. V. Van Vliet
{"title":"Additive manufacturing of high aspect-ratio structures with self-focusing photopolymerization","authors":"Mingyu Yang, K. Kowsari, Nia O. Myrie, Daniela Espinosa-Hoyos, A. Jagielska, Seok Kim, N. Fang, K. V. Van Vliet","doi":"10.37188/lam.2022.032","DOIUrl":"https://doi.org/10.37188/lam.2022.032","url":null,"abstract":"1 Photocrosslinkable polymers have been exploited to attain impressive advantages in printing freestanding, micrometer-scale, 2 mechanically compliant features. However, more integrated understanding of both the polymer photochemistry and the 3 microfabrication processes could enable new strategic design avenues, unlocking far-reaching applications of the light-based 4 modality of additive manufacturing. One promising approach for achieving high-aspect-ratio structures is to leverage the 5 phenomenon of light self-trapping during the photopolymerization process. In this review, we discuss the design of materials that 6 facilitate this optical behavior, the computational modeling and practical processing considerations to achieve high aspect-ratio 7 structures, and the range of applications that can benefit from architectures fabricated using light self-trapping—especially those 8 demanding free-standing structures and materials of stiffnesses relevant in biological applications. Coupled interactions exist 9 among material attributes, including polymer composition, and processing parameters such as light intensity. We identify strong 10 opportunities for predictive design of both the material and the process. Overall, this perspective describes the wide range of 11 existing polymers and additive manufacturing approaches, and highlights various future directions to enable constructs with new 12 complexities and functionalities through the development of next-generation photocrosslinkable materials and 13 micromanufacturing methods. 14","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2022-01-01DOI: 10.37188/lam.2022.016
P. Shanmugam, A. Light, A. Turley, K. Falaggis
{"title":"Variable shearing holography with applications to phase imaging and metrology","authors":"P. Shanmugam, A. Light, A. Turley, K. Falaggis","doi":"10.37188/lam.2022.016","DOIUrl":"https://doi.org/10.37188/lam.2022.016","url":null,"abstract":"We report variable shear interferometers employing liquid-crystal-based geometric-phase (GP) gratings. Conventional grating-based shear interferometers require two lateral shifts of the gratings to enable phase-shifting capabilities in x- and y- direction and two axial shifts of the gratings to adjust the shear amount in x- and y-direction, i.e., these systems need control of four axes mechanically. Here we show that the GP gratings combined with a pixelated polarization camera give instantaneous-phase shifting so that no mechanical movement is necessary to obtain phase shifts. Furthermore, we show that a single fixed shear with a rotational shear axis provides a more robust selection of shears while requiring the control of only one mechanical axis. We verify this statement using spatial domain and frequency domain criteria. We further show that the resolution of the reconstructed wavefield depends not only on the numerical aperture of the imaging system, the pixel size of the detector, or the spatial coherence of the source but also on the ability to determine the shear amount accurately. To improve this, we report a methodology to accurately detect the shear amounts using the second derivative of the autocorrelation function of the measured holograms, which further relaxes the requirements on mechanical stability.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2022-01-01DOI: 10.37188/lam.2022.017
Haowen Zhou, M. M. R. Hussain, P. Banerjee
{"title":"A review of the dual-wavelength technique for phase imaging and 3D topography","authors":"Haowen Zhou, M. M. R. Hussain, P. Banerjee","doi":"10.37188/lam.2022.017","DOIUrl":"https://doi.org/10.37188/lam.2022.017","url":null,"abstract":"Optically transmissive and reflective objects may have varying surface profiles, which translate to arbitrary phase profiles for light either transmitted through or reflected from the object. For high-throughput applications, resolving arbitrary phases and absolute heights is a key problem. To extend the ability of measuring absolute phase jumps in existing 3D imaging techniques, the dual-wavelength concept, proposed in late 1800s, has been developed in the last few decades. By adopting an extra wavelength in measurements, a synthetic wavelength, usually larger than each of the single wavelengths, can be simulated to extract large phases or height variations from micron-level to tens of centimeters scale. We review a brief history of the developments in the dualwavelength technique and present the methodology of this technique for using the phase difference and/or the phase sum. Various applications of the dual-wavelength technique are discussed, including height feature extraction from micron scale to centimeter scale in holography and interferometry, single-shot dual-wavelength digital holography for high-speed imaging, nanometer height resolution with fringe subdivision method, and applications in other novel phase imaging techniques and optical modalities. The noise sources for dualwavelength techniques for phase imaging and 3D topography are discussed, and potential ways to reduce or remove the noise are mentioned.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"134 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2022-01-01DOI: 10.37188/lam.2022.041
Yang Bai, Xuejun Zhang, Chao Yang, Longxiang Li, Xiao Luo
{"title":"Material removal model of magnetorheological finishing based on dense granular flow theory","authors":"Yang Bai, Xuejun Zhang, Chao Yang, Longxiang Li, Xiao Luo","doi":"10.37188/lam.2022.041","DOIUrl":"https://doi.org/10.37188/lam.2022.041","url":null,"abstract":"Magnetorheological finishing (MRF) technology is widely used in the fabrication of high-precision optical elements. The material removal mechanism of MRF has not been fully understood because MRF technology involves the integration of electromagnetics, contact mechanics, and materials science. In this study, the rheological properties of the MR polishing fluid in oscillation model have been investigated. We propose that the shear-thinned MR polishing fluid over the polishing area should be considered a dense granular flow, based on which a new contact model of MRF over the polishing area has been constructed. Removal function and processing force test experiments were conducted under different working gaps. The normal pressure and effective friction equations over the polishing area were built based on the continuous medium and dense granular flow theories. Then, a novel MRF material removal model was established. A comparison of the results of the theoretical model with actual polishing results demonstrated the accuracy of the established model. The novel model proposed herein reveals the generation mechanism of shear force over a polished workpiece and realizes effective decoupling of the main processing parameters that influence the material removal of MRF. The results of this study will provide new and effective theoretical guidance for the process optimization and technology improvement of MRF.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2022-01-01DOI: 10.37188/lam.2022.044
N. Petrov, B. Sokolenko, M. Kulya, Andrei Gorodetsky, A. Chernykh
{"title":"Design of broadband terahertz vector and vortex beams: II. Holographic assessment","authors":"N. Petrov, B. Sokolenko, M. Kulya, Andrei Gorodetsky, A. Chernykh","doi":"10.37188/lam.2022.044","DOIUrl":"https://doi.org/10.37188/lam.2022.044","url":null,"abstract":"Design of broadband terahertz vector and vortex beams: II. Holographic assessment. Abstract In this paper, we demonstrate the capabilities of the terahertz pulse time-domain holography in visualisation, simulation, and assessment of broadband THz vortex beam formation dynamics upon its shaping by elements of beam converter, and further propagation and manipulation. By adding Jones matrix formalism to describe broadband optical elements, we highlight the differences in the spatial-spectral and spatio-temporal structure of the formed vortex and vector beams dependence on the modulator used and visualise their modal features. The influence of diffraction field structure from each element in the broadband vortex modulator is revealed in numerical simulation and the formed beams are analysed against the simplified Laguerre-Gaussian beam model.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2022-01-01DOI: 10.37188/lam.2022.052
Xiaoru Dong, Ben Yang, Rui Zhu, Ruipu Wang, Yang Zhang, Yao Zhang, Z. Dong
{"title":"Tip-induced bond weakening, tilting, and hopping of a single CO molecule on Cu(100)","authors":"Xiaoru Dong, Ben Yang, Rui Zhu, Ruipu Wang, Yang Zhang, Yao Zhang, Z. Dong","doi":"10.37188/lam.2022.052","DOIUrl":"https://doi.org/10.37188/lam.2022.052","url":null,"abstract":"","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"137 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69984121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2021-08-04DOI: 10.1115/msec2021-63642
Zhicheng Rong, Chang Liu, Yingbin Hu
{"title":"4D Printing of Complex Ceramic Structures via Controlling Zirconia Contents and Patterns","authors":"Zhicheng Rong, Chang Liu, Yingbin Hu","doi":"10.1115/msec2021-63642","DOIUrl":"https://doi.org/10.1115/msec2021-63642","url":null,"abstract":"\u0000 In recent years, more and more attentions have been attracted on integrating three-dimensional (3D) printing with fields (such as magnetic field) or innovating new methods to reap the full potential of 3D printing in manufacturing high-quality parts and processing nano-scaled composites. Among all of newly innovated methods, four-dimensional (4D) printing has been proved to be an effective way of creating dynamic components from simple structures. Common feeding materials in 4D printing include shape memory hydrogels, shape memory polymers, and shape memory alloys. However, few attempts have been made on 4D printing of ceramic materials to shape ceramics into intricate structures, owing to ceramics’ inherent brittleness nature. Facing this problem, this investigation aims at filling the gap between 4D printing and fabrication of complex ceramic structures. Inspired by swelling-and-shrinking-induced self-folding, a 4D printing method is innovated to add an additional shape change of ceramic structures by controlling ZrO2 contents and patterns. Experimental results evidenced that by deliberately controlling ZrO2 contents and patterns, 3D-printed ceramic parts would undergo bending and twisting during the sintering process. To demonstrate the capabilities of this method, more complex structures (such as a flower-like structure) were fabricated. In addition, functional parts with magnetic behaviors were 4D-printed by incorporating iron into the PDMS-ZrO2 ink.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84351949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2021-08-04DOI: 10.1115/msec2021-63727
Isamu Nishida, K. Shirase
{"title":"Automated Tool Path Generation for End-Milling Operation Using CAD Model in STL Format","authors":"Isamu Nishida, K. Shirase","doi":"10.1115/msec2021-63727","DOIUrl":"https://doi.org/10.1115/msec2021-63727","url":null,"abstract":"\u0000 A method to extract the machining region from 3D CAD model in STL (Standard Triangulated Language) format and automatically generate tool path is proposed. At first, this study proposes a method to extract the machining region and obtain the geometrical feature such as convex shape or concave shape from only the 3D CAD model in STL format. The STL format has only triangular mesh data and drops all the information which is necessary to extract the removal volume for machining and the geometrical characteristics. Furthermore, the triangular mesh size is non-uniform. Then, the contour line model, in which the product model is minutely divided on the plane along any one axial direction and represented by points at intervals below the indicated resolution obtained from the contour line of the cross section of the product, is proposed. Subsequently, this study proposes a method to determine the machining conditions for each extracted machining region and automatically generate tool path according to the obtained geometrical feature of the machining region.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78554999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2021-08-04DOI: 10.1115/msec2021-63654
H. Shao, Jing Zhuoluo, Rougang Zhou, Nian Zhiheng, Haiqiang Liu, Youping Gong, H. Yong
{"title":"Manufacturing of Biodegradable Intramedullary Nail With High Strength","authors":"H. Shao, Jing Zhuoluo, Rougang Zhou, Nian Zhiheng, Haiqiang Liu, Youping Gong, H. Yong","doi":"10.1115/msec2021-63654","DOIUrl":"https://doi.org/10.1115/msec2021-63654","url":null,"abstract":"\u0000 Intramedullary nails (INs) have significant advantages in rigid fracture fixation. Conventional metal INs for long bone fracture fixation often lead to delay union or even nonunion healing due to their stress shielding effect and lack of biological activity. Besides, undegradable metals require a second surgery to remove them, which will not only impose a potential risk to the patient but also cause additional costs. Manufacturing high-strength biodegradable INs (BINs) is still a challenge. Here, an entirely new type of high-strength bioactive magnesium-containing silicate (CSi-Mg) BIN is manufactured by using casting, freeze drying and sintering technique. It has extremely high bending strength (> 41 MPa) and stable internal and external structure. We have systematically studied the influence of parameters such as the paste component, freeze drying process, and sintering process on the mechanical strength involved in the manufacturing process. According to our manufacturing method, a wide range of inorganic ceramic implants and BINs with different sizes can also be fabricated. The CSi-Mg BIN also has good bioactivity and biodegradation property. This bioceramic BIN and manufacturing process are expected to be applied to a variety of orthopedic medical devices. This novel bioactive BIN is expected to replace the traditional metal IN and become a more effective way of treating fracture.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82561547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2021-08-04DOI: 10.1115/msec2021-63617
P. Bhatt, R. Malhan, P. Rajendran, A. Shembekar, Satyandra K. Gupta
{"title":"Trajectory-Dependent Compensation Scheme to Reduce Manipulator Execution Errors for Manufacturing Applications","authors":"P. Bhatt, R. Malhan, P. Rajendran, A. Shembekar, Satyandra K. Gupta","doi":"10.1115/msec2021-63617","DOIUrl":"https://doi.org/10.1115/msec2021-63617","url":null,"abstract":"\u0000 Robotic manipulators are increasingly being used for performing a wide variety of manufacturing processes. Some of the manufacturing processes performed using robotic manipulators require high trajectory execution accuracy. Automatically generated trajectories often exhibit significant execution errors due to robot model inaccuracies and controller behaviors. This suggests that a trajectory compensation scheme can be used to modify trajectory to reduce execution error. Unfortunately, the nature of the trajectory and the end-effector loading affect the trajectory tracking errors. So, the error reduction using a trajectory-independent automated compensation scheme does not always work. Our paper presents a method to sample the input trajectory, generate the training data by measuring the sampled trajectory execution, and learning the compensation scheme based on the physical run. The learned trajectory-dependent compensation scheme is capable of reducing the execution error. To demonstrate the compensation scheme’s effectiveness, we perform experiments on manipulators. After the trajectory compensation, the manipulator has considerably low trajectory execution errors, with the average path error close to the robot’s repeatability.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87001356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}