轨迹相关补偿方案减少机械臂执行误差的制造应用

P. Bhatt, R. Malhan, P. Rajendran, A. Shembekar, Satyandra K. Gupta
{"title":"轨迹相关补偿方案减少机械臂执行误差的制造应用","authors":"P. Bhatt, R. Malhan, P. Rajendran, A. Shembekar, Satyandra K. Gupta","doi":"10.1115/msec2021-63617","DOIUrl":null,"url":null,"abstract":"\n Robotic manipulators are increasingly being used for performing a wide variety of manufacturing processes. Some of the manufacturing processes performed using robotic manipulators require high trajectory execution accuracy. Automatically generated trajectories often exhibit significant execution errors due to robot model inaccuracies and controller behaviors. This suggests that a trajectory compensation scheme can be used to modify trajectory to reduce execution error. Unfortunately, the nature of the trajectory and the end-effector loading affect the trajectory tracking errors. So, the error reduction using a trajectory-independent automated compensation scheme does not always work. Our paper presents a method to sample the input trajectory, generate the training data by measuring the sampled trajectory execution, and learning the compensation scheme based on the physical run. The learned trajectory-dependent compensation scheme is capable of reducing the execution error. To demonstrate the compensation scheme’s effectiveness, we perform experiments on manipulators. After the trajectory compensation, the manipulator has considerably low trajectory execution errors, with the average path error close to the robot’s repeatability.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trajectory-Dependent Compensation Scheme to Reduce Manipulator Execution Errors for Manufacturing Applications\",\"authors\":\"P. Bhatt, R. Malhan, P. Rajendran, A. Shembekar, Satyandra K. Gupta\",\"doi\":\"10.1115/msec2021-63617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Robotic manipulators are increasingly being used for performing a wide variety of manufacturing processes. Some of the manufacturing processes performed using robotic manipulators require high trajectory execution accuracy. Automatically generated trajectories often exhibit significant execution errors due to robot model inaccuracies and controller behaviors. This suggests that a trajectory compensation scheme can be used to modify trajectory to reduce execution error. Unfortunately, the nature of the trajectory and the end-effector loading affect the trajectory tracking errors. So, the error reduction using a trajectory-independent automated compensation scheme does not always work. Our paper presents a method to sample the input trajectory, generate the training data by measuring the sampled trajectory execution, and learning the compensation scheme based on the physical run. The learned trajectory-dependent compensation scheme is capable of reducing the execution error. To demonstrate the compensation scheme’s effectiveness, we perform experiments on manipulators. After the trajectory compensation, the manipulator has considerably low trajectory execution errors, with the average path error close to the robot’s repeatability.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2021-63617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器人操纵器越来越多地被用于执行各种各样的制造过程。使用机器人操纵器执行的一些制造过程要求高轨迹执行精度。由于机器人模型的不精确性和控制器的行为,自动生成的轨迹往往会出现显著的执行误差。这表明可以采用轨迹补偿方案来修改轨迹以减小执行误差。不幸的是,轨迹的性质和末端执行器的载荷会影响轨迹跟踪误差。因此,使用与轨迹无关的自动补偿方案减少误差并不总是有效的。本文提出了一种对输入轨迹进行采样,通过测量采样轨迹的执行情况来生成训练数据,并学习基于物理运行的补偿方案的方法。学习的轨迹相关补偿方案能够减小执行误差。为了验证补偿方案的有效性,我们在机械手上进行了实验。经过轨迹补偿后,机械手具有较低的轨迹执行误差,平均轨迹误差接近机器人的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory-Dependent Compensation Scheme to Reduce Manipulator Execution Errors for Manufacturing Applications
Robotic manipulators are increasingly being used for performing a wide variety of manufacturing processes. Some of the manufacturing processes performed using robotic manipulators require high trajectory execution accuracy. Automatically generated trajectories often exhibit significant execution errors due to robot model inaccuracies and controller behaviors. This suggests that a trajectory compensation scheme can be used to modify trajectory to reduce execution error. Unfortunately, the nature of the trajectory and the end-effector loading affect the trajectory tracking errors. So, the error reduction using a trajectory-independent automated compensation scheme does not always work. Our paper presents a method to sample the input trajectory, generate the training data by measuring the sampled trajectory execution, and learning the compensation scheme based on the physical run. The learned trajectory-dependent compensation scheme is capable of reducing the execution error. To demonstrate the compensation scheme’s effectiveness, we perform experiments on manipulators. After the trajectory compensation, the manipulator has considerably low trajectory execution errors, with the average path error close to the robot’s repeatability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信