{"title":"An In-Depth Analysis of Various Technologies Used for Mushroom Drying","authors":"Chitesh Kumar, Manpreet Singh, Ruchika Zalpouri, Preetinder Kaur","doi":"10.1007/s12393-023-09351-5","DOIUrl":"10.1007/s12393-023-09351-5","url":null,"abstract":"<div><p>The possible health advantages and abundance of physiologically active substances in mushrooms make them a prized food. To preserve mushrooms and extend their shelf life, drying is a commonly used method. This paper seeks to investigate various mushroom drying methods and analyze their impact on the physicochemical properties of mushrooms. When mushrooms are dried, the chemical and physical characteristics of the product change, potentially losing nutrients and changing in texture and flavor. To ascertain their effect on the quality of the mushrooms, it is crucial to research the various drying systems. The goal of this review is to analyze and assess the various drying methods for mushrooms, namely, solar drying, hot air drying, microwave drying, infrared drying, vacuum drying, osmotic drying, ultrasound-assisted drying, freeze drying, and electrohydrodynamic drying. The article also attempts to examine how these techniques affect the physicochemical properties of mushrooms that have been identified by numerous studies. According to the records, freeze-dried mushrooms exhibited superior preservation of texture and higher levels of antioxidants compared to hot air-dried and sun-dried mushrooms. On the other hand, microwave-dried mushrooms had greater amounts of total phenolic compounds and antioxidant activity but lower levels of vitamin C compared to hot air-dried mushrooms. Therefore, it is essential to consider the impact of the drying method on the nutritional and sensory properties of the mushrooms to ensure that the final product meets the desired standards.\u0000</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"491 - 524"},"PeriodicalIF":6.6,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4301357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices","authors":"Rosalam Sarbatly, Jamilah Sariau, Duduku Krishnaiah","doi":"10.1007/s12393-023-09346-2","DOIUrl":"10.1007/s12393-023-09346-2","url":null,"abstract":"<div><p>Fruit juices are traditionally processed thermally to avoid microorganisms’ growth and increase their shelf-life. The concentration of juices by thermal evaporation is carried out to reduce their volume and consequently the storage and transportation costs. However, many studies revealed that the high-temperature operation destroys many valuable nutrients and the aroma of the juice. Currently, membrane technology has emerged as an alternative to conventional processes to clarify and concentrate fruit juices due to its ability to improve juices’ safety, quality, and nutritional values. Low-cost, low-energy requirement, and minimal footprint make membrane technology an attractive choice for industrial adoption. The low-temperature operation that preserves the nutritional and sensorial quality of the juice can fulfill the market demand for healthy juice products. In this review, the pressure-driven membrane processes, including microfiltration, ultrafiltration, and reverse osmosis; osmotic distillation; membrane distillation; and forward osmosis that have been widely investigated in recent years, are discussed.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"420 - 437"},"PeriodicalIF":6.6,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4423047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Modeling the Temperature Effects on Biopolymers and Foods Undergoing Glass Transition without the WLF Equation","authors":"Micha Peleg","doi":"10.1007/s12393-023-09345-3","DOIUrl":"10.1007/s12393-023-09345-3","url":null,"abstract":"<div><p>Traditionally, the effect of temperature on the rate of biochemical reactions and biological processes in foods, and on the mechanical properties of biopolymers including foods, has been described by the Arrhenius equation which has a single adjustable parameter, namely the “energy of activation.” During the last three decades, this model has been frequently replaced by the WLF equation, borrowed from Polymer Science, which has two adjustable parameters and hence better fit to experimental data. It is demonstrated that the WLF model (and hence also the VTF model) is identical to an expanded version of the Arrhenius equation where the absolute temperature is replaced by an adjustable reference temperature. Both versions imply that the curve describing a process or reaction’s rate rise with temperature or the viscosity or modulus drop with temperature must have the same characteristic upper concavity above and below the glass transition temperature, <i>T</i><sub>g</sub>, however it is defined and determined. Nevertheless, at least some reported experimental data recorded at or around the transition regime suggest otherwise and in certain cases even show concavity direction inversion. The mathematical description of such relationships requires different kinds of temperature-dependence models, and two such alternatives are described. Also suggested are two different ways to present the temperature as a dimensionless independent variable which enables to lump and compare different transition patterns in the same graph. The described approach is purely formalistic; no fit considerations are invoked and neither model is claimed to be exclusive.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"381 - 392"},"PeriodicalIF":6.6,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5161428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in the Application of LEDs-Based Hurdle Technology for Enhancing Food Safety","authors":"Xinpeng Yu, Ziqian Zhang, Zhuo Jiang, Qianwang Zheng","doi":"10.1007/s12393-023-09344-4","DOIUrl":"10.1007/s12393-023-09344-4","url":null,"abstract":"<div><p>The application of hurdle interventions can improve microbial efficacy as well as ensure food quality. Light-emitting diodes (LEDs), as a promising non-thermal food preservation technology, have increasingly attracted attention in the food industry; however, the technology possesses certain limitations that have impeded widespread adoption by the food industry. In recent years, the combination of LEDs with other intervention strategies (e.g., exogenous photosensitizers, traditional, and novel approaches) has been proposed and attracted much interest. This review aims to provide a comprehensive summary of the current status of LED-based hurdle technologies in the food industry. The review focused on the combined effect and mechanism of different hurdles and LEDs in improving food safety. In addition, the potential as a pre-treatment tool for LEDs was also evaluated for their ability to reduce microbial resistance to other interventions. Finally, some critical issues and challenges have been proposed to be addressed to ensure the efficacy and safety of LED-based hurdles in food systems.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 2","pages":"196 - 214"},"PeriodicalIF":6.6,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4096703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clóvis A. Balbinot Filho, Jônatas L. Dias, Evertan A. Rebelatto, Marcelo Lanza
{"title":"Solubility of Food-Relevant Substances in Pure and Modified Supercritical Carbon Dioxide: Experimental Data (2011–Present), Modeling, and Related Applications","authors":"Clóvis A. Balbinot Filho, Jônatas L. Dias, Evertan A. Rebelatto, Marcelo Lanza","doi":"10.1007/s12393-023-09343-5","DOIUrl":"10.1007/s12393-023-09343-5","url":null,"abstract":"<div><p>For many high-pressure processes employing pressurized fluids, such as supercritical fluid extraction (SFE) of natural matrices with supercritical carbon dioxide (scCO<sub>2</sub>), CO<sub>2</sub> plays a central role as a solvent, solubilizing agent, or medium for extracting and processing diverse food-type substances, in which the knowledge on the solubility behavior of multiple compounds at the varying process conditions is essential in the process design, but not completely understood. High-pressure solubility data in pure scCO<sub>2</sub> or cosolvent-modified CO<sub>2</sub> of distinct types of organic compounds found in or related to food (mainly vegetable oils, essential oils, carotenoids, phenolics, and vitamins) published in the last decade were reviewed, encompassing temperatures of 298–373 K and pressures up to 95 MPa. Crossover phenomena, solubility enhancements in cosolvent systems or those containing a co-solute, and the antisolvent feature of CO<sub>2</sub> are also discussed. Current models for the correlation of solubility data by semi-empirical and thermodynamic models are compared, and the limitations of each class of models are highlighted. Lipid-soluble substances (fatty acid esters, fatty acids, and essential oils) are the most CO<sub>2</sub>-soluble food-type substances in contrast to polar and complex polyphenols and carotenoids. The investigated solutes can be obtained by SFE, separated by fractionation using scCO<sub>2</sub>, or applied to enzymatic reactions and particle formation processes. It was concluded based on recent applications that improved SFE, effective separation factors for supercritical fractionation, better solubilization of reactive systems, and supersaturation conditions to obtain micronized particles could be established based on the solubility behavior of dissolved solutes in the supercritical media at high pressures.\u0000</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"466 - 490"},"PeriodicalIF":6.6,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4097773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Congli Cui, Lin Gao, Lei Dai, Na Ji, Yang Qin, Rui Shi, Yuanyuan Qiao, Liu Xiong, Qingjie Sun
{"title":"Hydrophobic Biopolymer-Based Films: Strategies, Properties, and Food Applications","authors":"Congli Cui, Lin Gao, Lei Dai, Na Ji, Yang Qin, Rui Shi, Yuanyuan Qiao, Liu Xiong, Qingjie Sun","doi":"10.1007/s12393-023-09342-6","DOIUrl":"10.1007/s12393-023-09342-6","url":null,"abstract":"<div><p>Food packaging materials are crucial to maintaining food quality, as they play an important role in preventing food deterioration, dehydration, and oxidation. Unlike synthetic polymers, natural biopolymers, such as polysaccharides and proteins, are abundant and widespread resources that are nontoxic, biocompatible, and biodegradable. In food packaging, contact between packaging materials and moist foods can frequently degrade the performance of the materials. This has increased research into the development of hydrophobic biopolymer-based films. Here, we summarize the effective preparation strategies, mechanical and barrier properties, pH responsiveness, self-cleaning performance, and antibacterial and antioxidant functions of hydrophobic biopolymer-based films. The most effective methods for preparing hydrophobic biopolymer-based films are electrospinning with hydrophobically modified biopolymers, adding micro/nanofillers and hydrophobic compounds to the films, and hydrophobically modifying the films. These methods can even generate superhydrophobic films with excellent barrier properties. We also discuss the current opportunities and challenges presented by hydrophobic biopolymer-based films.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 2","pages":"360 - 379"},"PeriodicalIF":6.6,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4147735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capillary Pressure in Unsaturated Food Systems: Its Importance and Accounting for It in Mathematical Models","authors":"Yash Shah, Pawan Singh Takhar","doi":"10.1007/s12393-023-09341-7","DOIUrl":"10.1007/s12393-023-09341-7","url":null,"abstract":"<div><p>Capillary pressure plays a critical role in driving fluid flow in unsaturated porous (pores not saturated with liquids but also containing air/gas) structures. The role and importance of capillary pressure have been well documented in geological and soil sciences but remain largely unexplored in the food literature. Available mathematical models for unsaturated food systems have either ignored the capillary-driven flow or combined it with the diffusive flow. Such approaches are bound to impact the accuracy of models. The derivation of the microscale definition of capillary pressure is overviewed, and the limitations of using the microscale definition at the macroscale are discussed. Next, the factors affecting capillary pressure are briefly reviewed. The parametric expressions for capillary pressure as a function of saturation and temperature, developed originally for soils, are listed, and their application for food systems is encouraged. Capillary pressure estimation methods used for food systems are then discussed. Next, the different mathematical formulations for food systems are compared, and the limitations of each formulation are discussed. Additionally, examples of hybrid mixture theory–based multiscale models for frying involving capillary pressure are provided. Capillary-driven liquid flow plays an important role in the unsaturated transport during the processing of porous solid foods. However, measuring capillary pressure in food systems is challenging because of the soft nature of foods. As a result, there is a lack of available capillary pressure data for food systems which has hampered the development of mechanistic models. Nevertheless, providing a fundamental understanding of capillary pressure will aid food engineers in designing new experimental studies and developing mechanistic models for unsaturated processes.\u0000</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"393 - 419"},"PeriodicalIF":6.6,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4831917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Nonthermal Processing on the Structural and Techno-Functional Properties of Bovine α-Lactalbumin","authors":"Humberto Hernández-Sánchez","doi":"10.1007/s12393-023-09340-8","DOIUrl":"10.1007/s12393-023-09340-8","url":null,"abstract":"<div><p>Bovine α-lactalbumin (α-LA) is a small (MW 14,178) globular whey protein with good nutritional and functional properties. Its increased availability as a purified protein has made easier the study of the effects of different processing treatments on its structural and techno-functional properties. The consumer demand for fresh foods with longer shelf-life and good sensory qualities led to extensive research in the field of the so-called nonthermal technologies to inactivate microorganisms and enzymes. However, these technologies have also acquired great importance in the field of modification and improvement of structural, physicochemical, and techno-functional properties of food proteins. In this review, the effects of some nonthermal processes (high hydrostatic pressure, pulsed electric fields, high-intensity ultrasound, ultraviolet light, and atmospheric pressure cold plasma) on the properties of α-LA are examined, and the research needs in this field are indicated.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 2","pages":"187 - 195"},"PeriodicalIF":6.6,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4546812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Designs of Air Source Heat Pump Dryers in Agro-food Processing Industry","authors":"A. J. Fernando, Kurt A. Rosentrater","doi":"10.1007/s12393-023-09337-3","DOIUrl":"10.1007/s12393-023-09337-3","url":null,"abstract":"<div><p>Air source heat pump drying systems in the agricultural production sector were reviewed in this study in terms of optimal designs, leading to the optimization of the heat pump drying process. Several intricate designs have been used to optimize the heat pump drying process. Multiple evaporators with multiple condensers, multiple drying chambers, cascade heat pump drying systems, hybrid heat pump drying systems, different configurations of the heat pump components, and refrigerants with lower environmental impacts have been used to accomplish optimal heat pump dryer designs and thereby optimum drying conditions for agricultural products.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 2","pages":"261 - 275"},"PeriodicalIF":6.6,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4392482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed Shijas Vallikkadan, Logesh Dhanapal, Sayantani Dutta, S. K. Sivakamasundari, J. A. Moses, C. Anandharamakrishnan
{"title":"Meat Alternatives: Evolution, Structuring Techniques, Trends, and Challenges","authors":"Muhammed Shijas Vallikkadan, Logesh Dhanapal, Sayantani Dutta, S. K. Sivakamasundari, J. A. Moses, C. Anandharamakrishnan","doi":"10.1007/s12393-023-09332-8","DOIUrl":"10.1007/s12393-023-09332-8","url":null,"abstract":"<div><p>The global meat substitute industry is estimated to be worth $8.1 billion by 2026. Prevailing health consciousness among consumers and their concern for the future environment has lifted the concept of meat alternatives from niche to the mainstream. Numerous research findings have emphasized the importance of meat alternatives or substitutes formulated from plant protein, animal cells, and insect-based sources, which emulate the nutritional composition and sensorial properties of animal meat. The current review discusses the necessity of meat substitutes, and their evolution, and bestows an outline of the ongoing research in this field. Novel protein sources such as vegetal proteins (cereal, pulses, oil seeds) and non-vegetal proteins (fungal, air protein, insect, myofibril) are reported to offer a viable alternative to animal meat. However, the functionalities of these proteins and the structuring technique influence the textural properties of the end products. Thus, the selection of a suitable technique is an important aspect in the formulation of the meat alternative. A thorough discussion of various structuring techniques for synthesizing matrixes and fibers with similar textural attributes to that of animal meat has been presented. Furthermore, limitations that confine consumers’ acceptance, the feasibility of scale-up, and the prerequisite for the regulatory framework for meat alternatives have also been pointed out. Overall, the ingredients and techniques of formulation of meat alternatives discussed in detail in this review can provide insight to the researchers and industries in formulating novel meat alternatives.\u0000</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 2","pages":"329 - 359"},"PeriodicalIF":6.6,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-023-09332-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4313917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}