{"title":"Compactness estimates for difference schemes for conservation laws with discontinuous flux","authors":"Kenneth H Karlsen, John D Towers","doi":"10.1093/imanum/drad096","DOIUrl":"https://doi.org/10.1093/imanum/drad096","url":null,"abstract":"We establish quantitative compactness estimates for finite difference schemes used to solve nonlinear conservation laws. These equations involve a flux function $f(k(x,t),u)$, where the coefficient $k(x,t)$ is $BV$-regular and may exhibit discontinuities along curves in the $(x,t)$ plane. Our approach, which is technically elementary, relies on a discrete interaction estimate and one entropy function. While the details are specifically outlined for the Lax-Friedrichs scheme, the same framework can be applied to other difference schemes. Notably, our compactness estimates are new even in the homogeneous case ($kequiv 1$).","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"35 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A constraint dissolving approach for nonsmooth optimization over the Stiefel manifold","authors":"Xiaoyin Hu, Nachuan Xiao, Xin Liu, Kim-Chuan Toh","doi":"10.1093/imanum/drad098","DOIUrl":"https://doi.org/10.1093/imanum/drad098","url":null,"abstract":"This paper focuses on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in a neighborhood of the Stiefel manifold. Furthermore, we show that the Clarke subdifferential of NCDF is easy to achieve from the Clarke subdifferential of the objective function. Therefore, various existing approaches for unconstrained nonsmooth optimization can be directly applied to nonsmooth optimization problems over the Stiefel manifold. We propose a framework for developing subgradient-based methods and establishing their convergence properties based on prior works. Furthermore, based on our proposed framework, we can develop efficient approaches for optimization over the Stiefel manifold. Preliminary numerical experiments further highlight that the proposed constraint dissolving approach yields efficient and direct implementations of various unconstrained approaches to nonsmooth optimization problems over the Stiefel manifold.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"87 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139041468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On best p-norm approximation of discrete data by polynomials","authors":"Michael S Floater","doi":"10.1093/imanum/drad086","DOIUrl":"https://doi.org/10.1093/imanum/drad086","url":null,"abstract":"In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semilinear optimal control with Dirac measures","authors":"Enrique Otárola","doi":"10.1093/imanum/drad091","DOIUrl":"https://doi.org/10.1093/imanum/drad091","url":null,"abstract":"The purpose of this work is to study an optimal control problem for a semilinear elliptic partial differential equation with a linear combination of Dirac measures as a forcing term; the control variable corresponds to the amplitude of such singular sources. We analyze the existence of optimal solutions and derive first- and, necessary and sufficient, second-order optimality conditions. We develop a solution technique that discretizes the state and adjoint equations with continuous piecewise linear finite elements; the control variable is already discrete. We analyze the convergence properties of discretizations and obtain, in two dimensions, an a priori error estimate for the underlying approximation of an optimal control variable.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"102 30","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138455384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unconditionally stable small stencil enriched multiple point flux approximations of heterogeneous diffusion problems on general meshes","authors":"Julien Coatléven","doi":"10.1093/imanum/drad087","DOIUrl":"https://doi.org/10.1093/imanum/drad087","url":null,"abstract":"We derive new multiple point flux approximations (MPFA) for the finite volume approximation of heterogeneous and anisotropic diffusion problems on general meshes, in dimensions 2 and 3. The resulting methods are unconditionally stable while preserving the small stencil typical of MPFA finite volumes. The key idea is to solve local variational problems with a well-designed stabilization term from which we deduce conservative flux instead of directly prescribing a flux formula and solving the usual flux continuity equations. The boundary conditions of our local variational problems are handled through additional cell-centered unknowns, leading to an overall scheme with the same number of unknowns than first-order discontinuous Galerkin methods. Convergence results follow from well-established frameworks, while numerical experiments illustrate the good behavior of the method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"80 13","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138449679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Beirão da Veiga, C Canuto, R H Nochetto, G Vacca, M Verani
{"title":"Adaptive VEM for variable data: convergence and optimality","authors":"L Beirão da Veiga, C Canuto, R H Nochetto, G Vacca, M Verani","doi":"10.1093/imanum/drad085","DOIUrl":"https://doi.org/10.1093/imanum/drad085","url":null,"abstract":"We design an adaptive virtual element method (AVEM) of lowest order over triangular meshes with hanging nodes in 2d, which are treated as polygons. AVEM hinges on the stabilization-free a posteriori error estimators recently derived in Beirão da Veiga et al. (2023, Adaptive VEM: stabilization-free a posteriori error analysis and contraction property. SIAM J. Numer. Anal., 61, 457–494). The crucial property, which also plays a central role in this paper, is that the stabilization term can be made arbitrarily small relative to the a posteriori error estimators upon increasing the stabilization parameter. Our AVEM concatenates two modules, GALERKIN and DATA. The former deals with piecewise constant data and is shown in the above article to be a contraction between consecutive iterates. The latter approximates general data by piecewise constants to a desired accuracy. AVEM is shown to be convergent and quasi-optimal, in terms of error decay versus degrees of freedom, for solutions and data belonging to appropriate approximation classes. Numerical experiments illustrate the interplay between these two modules and provide computational evidence of optimality.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"5 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zorica Milovanović Jeknić, Aleksandra Delić, Sandra Živanović
{"title":"A two-dimensional boundary value problem of elliptic type with nonlocal conjugation conditions","authors":"Zorica Milovanović Jeknić, Aleksandra Delić, Sandra Živanović","doi":"10.1093/imanum/drad084","DOIUrl":"https://doi.org/10.1093/imanum/drad084","url":null,"abstract":"We consider an elliptic boundary value problem with nonlocal conjugation conditions. An a priori estimate for its weak solution in an appropriate Sobolev-like space is proved. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate, compatible with the smoothness of the input data, is obtained.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"27 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109126944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergent finite element methods for the perfect conductivity problem with close-to-touching inclusions","authors":"Buyang Li, Haigang Li, Zongze Yang","doi":"10.1093/imanum/drad088","DOIUrl":"https://doi.org/10.1093/imanum/drad088","url":null,"abstract":"In the perfect conductivity problem (i.e., the conductivity problem with perfectly conducting inclusions), the gradient of the electric field is often very large in a narrow region between two inclusions and blows up as the distance between the inclusions tends to zero. The rigorous error analysis for the computation of such perfect conductivity problems with close-to-touching inclusions of general geometry still remains open in three dimensions. We address this problem by establishing new asymptotic estimates for the second-order partial derivatives of the solution with explicit dependence on the distance $varepsilon $ between the inclusions, and use the asymptotic estimates to design a class of graded meshes and finite element spaces to solve the perfect conductivity problem with possibly close-to-touching inclusions. In particular, we propose a special finite element basis function that resolves the asymptotic singularity of the solution by making the interpolation error bounded in $W^{1,infty }$ in a neighborhood of the close-to-touching point, even though the solution itself is blowing up in $W^{1,infty }$. This is crucial in the error analysis for the numerical approximations. We prove that the proposed method yields optimal-order convergence in the $H^1$ norm, uniformly with respect to the distance $varepsilon $ between the inclusions, in both two and three dimensions for general convex smooth inclusions, which are possibly close-to-touching. Numerical experiments are presented to support the theoretical analysis and to illustrate the convergence of the proposed method for different shapes of inclusions in both two- and three-dimensional domains.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109126945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients","authors":"Xiaojie Wang, Yuying Zhao, Zhongqiang Zhang","doi":"10.1093/imanum/drad083","DOIUrl":"https://doi.org/10.1093/imanum/drad083","url":null,"abstract":"We present an error analysis of weak convergence of one-step numerical schemes for stochastic differential equations (SDEs) with super-linearly growing coefficients. Following Milstein’s weak error analysis on the one-step approximation of SDEs, we prove a general result on weak convergence of the one-step discretization of the SDEs mentioned above. As applications, we show the weak convergence rates for several numerical schemes of half-order strong convergence, such as tamed and balanced schemes. Numerical examples are presented to verify our theoretical analysis.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"27 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109126943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical analysis of a hybridized discontinuous Galerkin method for the Cahn–Hilliard problem","authors":"Keegan L A Kirk, Beatrice Riviere, Rami Masri","doi":"10.1093/imanum/drad075","DOIUrl":"https://doi.org/10.1093/imanum/drad075","url":null,"abstract":"The mixed form of the Cahn–Hilliard equations is discretized by the hybridized discontinuous Galerkin method. For any chemical energy density, existence and uniqueness of the numerical solution is obtained. The scheme is proved to be unconditionally stable. Convergence of the method is obtained by deriving a priori error estimates that are valid for the Ginzburg–Landau chemical energy density and for convex domains. The paper also contains discrete functional tools, namely discrete Agmon and Gagliardo–Nirenberg inequalities, which are proved to be valid in the hybridizable discontinuous Galerkin spaces.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"11 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109127013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}