二维 NLS 时间积分的低正则误差估计

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz
{"title":"二维 NLS 时间积分的低正则误差估计","authors":"Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz","doi":"10.1093/imanum/drae054","DOIUrl":null,"url":null,"abstract":"A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schrödinger equation on the two-dimensional torus $\\mathbb{T}^{2}$. The scheme is analysed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^{s}(\\mathbb{T}^{2})$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\\tau ^{s/2}$ in $L^{2}(\\mathbb{T}^{2})$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low regularity error estimates for the time integration of 2D NLS\",\"authors\":\"Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz\",\"doi\":\"10.1093/imanum/drae054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schrödinger equation on the two-dimensional torus $\\\\mathbb{T}^{2}$. The scheme is analysed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^{s}(\\\\mathbb{T}^{2})$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\\\\tau ^{s/2}$ in $L^{2}(\\\\mathbb{T}^{2})$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae054\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae054","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对二维环$\mathbb{T}^{2}$上的立方非线性薛定谔方程的时间积分,我们提出了一种滤波李分裂方案。该方案是在离散布尔干空间的框架下分析的,它允许我们考虑低正则性的初始数据;更确切地说,是$H^{s}(\mathbb{T}^{2})$中$s>0$的初始数据。这样,通常对索引为 $s>1$ 的光滑索波列夫空间的稳定性限制就被克服了。在此正则水平上,$L^{2}(\mathbb{T}^{2})$中的$\tau ^{s/2}$阶收敛速率得到了证明。数值示例说明了这些收敛结果是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low regularity error estimates for the time integration of 2D NLS
A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schrödinger equation on the two-dimensional torus $\mathbb{T}^{2}$. The scheme is analysed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^{s}(\mathbb{T}^{2})$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\tau ^{s/2}$ in $L^{2}(\mathbb{T}^{2})$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信