Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz
{"title":"Low regularity error estimates for the time integration of 2D NLS","authors":"Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz","doi":"10.1093/imanum/drae054","DOIUrl":null,"url":null,"abstract":"A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schrödinger equation on the two-dimensional torus $\\mathbb{T}^{2}$. The scheme is analysed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^{s}(\\mathbb{T}^{2})$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\\tau ^{s/2}$ in $L^{2}(\\mathbb{T}^{2})$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae054","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schrödinger equation on the two-dimensional torus $\mathbb{T}^{2}$. The scheme is analysed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^{s}(\mathbb{T}^{2})$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\tau ^{s/2}$ in $L^{2}(\mathbb{T}^{2})$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.