Finite Elements in Analysis and Design最新文献

筛选
英文 中文
Statistical topology optimization for damage identification for orthotropic and cellular structures 基于统计拓扑优化的正交各向异性和细胞结构损伤识别
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-17 DOI: 10.1016/j.finel.2025.104459
Jae Yeop Na, Sol Ji Han, EunBin Park, Gil Ho Yoon
{"title":"Statistical topology optimization for damage identification for orthotropic and cellular structures","authors":"Jae Yeop Na,&nbsp;Sol Ji Han,&nbsp;EunBin Park,&nbsp;Gil Ho Yoon","doi":"10.1016/j.finel.2025.104459","DOIUrl":"10.1016/j.finel.2025.104459","url":null,"abstract":"<div><div>This study aims to enhance the accuracy and robustness of structural damage identification by extending the statistical topology optimization (STO) framework. While previous STO research has primarily focused on isotropic materials, its applicability to orthotropic and cellular structures has not been fully explored. To broaden its scope, the approach applies the STO framework to models with directional stiffness and periodic microstructures. Multiple topology optimization runs are performed under varied frequency excitations, and consistent damage patterns are extracted using density-based spatial clustering (DBSCAN). Unlike earlier studies, this work introduces genetic algorithm-based tuning of DBSCAN parameters to improve clustering reliability and reduce user dependency. Damage is modeled differently according to the structure type: through density reduction or principal direction rotation in orthotropic models, and by adjusting the void size within cellular unit cells, from which the effective material properties are derived through polynomial-based numerical homogenization. Numerical examples confirm that the framework accurately localizes damage under complex material conditions and achieves superior performance compared to conventional methods.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104459"},"PeriodicalIF":3.5,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Gappy-POD to derive a reduced quadrature rule 利用Gappy-POD导出了一种简化正交规则
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-17 DOI: 10.1016/j.finel.2025.104439
Shigeki Kaneko
{"title":"Using Gappy-POD to derive a reduced quadrature rule","authors":"Shigeki Kaneko","doi":"10.1016/j.finel.2025.104439","DOIUrl":"10.1016/j.finel.2025.104439","url":null,"abstract":"<div><div>Among various reduced-order modeling techniques, the combination of low-dimensional approximation using proper orthogonal decomposition (POD) and the Galerkin method is a promising approach. However, the POD–Galerkin method has a well-known drawback that the computation of the Galerkin projection is heavy, which overshadows the reduction of computational cost for solving simultaneous equations. To speed up the reduced-order model analysis, a hyper-reduction method, which approximately calculates the Galerkin projection, has been introduced. Although several hyper-reduction methods have been proposed up to date, currently, a reduced quadrature (RQ) method is widely used because of its stability. In the conventional RQ method, a sparse representation problem with <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> pseudo-norm minimization under the non-negativity constraint is solved to derive an RQ rule. However, it is difficult to control the number of non-zero entries in the weight vector of RQ and the error of least-squares fitting. The purpose of the present study was to develop a new RQ derivation method to overcome this difficulty. The formulation of the new method is not based on the sparse representation but on Gappy-POD, which is a sparse sampling technique and was originally proposed for image reconstruction. To demonstrate the new method, we applied it to nonlinear dynamic structural analysis with geometrical nonlinearity and to incompressible viscous flow analysis. The results confirmed that the new method can provide a more accurate RQ rule than can the conventional method.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104439"},"PeriodicalIF":3.5,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating multiplicative Nitsche's method with HIGA platform: Isogeometric analysis of hydraulic tunnels lining thickness 基于HIGA平台的乘Nitsche法积分:水工隧洞衬砌厚度等几何分析
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-17 DOI: 10.1016/j.finel.2025.104445
Mingchao Li , Yixin Wang , Mengxi Zhang , Ang Li , Stéphane P.A. Bordas , Peng Yu , Yinpeng He
{"title":"Integrating multiplicative Nitsche's method with HIGA platform: Isogeometric analysis of hydraulic tunnels lining thickness","authors":"Mingchao Li ,&nbsp;Yixin Wang ,&nbsp;Mengxi Zhang ,&nbsp;Ang Li ,&nbsp;Stéphane P.A. Bordas ,&nbsp;Peng Yu ,&nbsp;Yinpeng He","doi":"10.1016/j.finel.2025.104445","DOIUrl":"10.1016/j.finel.2025.104445","url":null,"abstract":"<div><div>Isogeometric Analysis (IGA) is a novel numerical analysis method that can occupy the gap between geometrical and analytical models. IGA, when integrated with splicing algorithms, enables the splicing and coupling of multiple computational domains. This approach offers a novel solution for simulating complex hydraulic tunnels and similar practical engineering applications involving complex computational models. In this paper, a multiplicative Nitsche's method is proposed. The method determines the stabilization parameter <span><math><mrow><mi>α</mi></mrow></math></span> for contact models through a precise control coefficient computation equation, based on a chosen weighting parameter <span><math><mrow><mi>γ</mi></mrow></math></span>, and is integrated into the Hydraulic IsoGeometric Analysis (HIGA) platform. This method addresses the instability issues typically associated with the traditional Nitsche's method, which arise from empirically selected control parameters. Compared with the conventional Nitsche's method, multiplicative Nitsche's method significantly enhances the accuracy and stability of IGA while maintaining computational efficiency, according to the results of several 2D and 3D numerical examples. To demonstrate the engineering application prospects of multiplicative Nitsche's method, the proven applicability of IGA with the multiplicative Nitsche's method is showcased through a static analysis of a hydraulic tunnel model with complex geological features. The results demonstrate the method's capability to handle large-scale, multi-patch engineering problems, underscoring its potential for simulating and analyzing hydraulic tunnels under complex topographical and geological conditions.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104445"},"PeriodicalIF":3.5,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An implicit coupled method of scaled boundary finite element and peridynamics for fracture analysis 断裂分析的尺度边界有限元与周动力隐式耦合方法
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-16 DOI: 10.1016/j.finel.2025.104453
Wei Yu , Jun Liu , Haibo Wang , Lei Qin , Lei Gan , Quansheng Zang , Wenbin Ye
{"title":"An implicit coupled method of scaled boundary finite element and peridynamics for fracture analysis","authors":"Wei Yu ,&nbsp;Jun Liu ,&nbsp;Haibo Wang ,&nbsp;Lei Qin ,&nbsp;Lei Gan ,&nbsp;Quansheng Zang ,&nbsp;Wenbin Ye","doi":"10.1016/j.finel.2025.104453","DOIUrl":"10.1016/j.finel.2025.104453","url":null,"abstract":"<div><div>In this paper, firstly, an innovative multi-scale coupled method based on scaled boundary finite element (SBFEM) and peridynamics (PD) is proposed for predicting fracture propagation of elastic bodies in static/quasi-static problems. The coupled process in this method is established not by transition regions (overlapping regions), but by force equilibrium conditions at common points, which greatly reduces the complexity of modeling. The SBFEM is introduced to model the non-cracked domain and the PD is applied to model the cracked domain in this method. This reduces a great deal of computational time compared to the PD method. Moreover, the limitations of surface effects and troublesome load conditions for the PD calculation can be eliminated or mitigated. The SBFEM is different from FEM in that only the boundary of elastic bodies is discretized. Therefore, the computational efficiency is further improved compared with the coupled method of the FEM and PD. The SBFEM is also different from BEM in that it does not need to provide the fundamental solution and compute the singular integrals. Hence, the method is more convenient for solving complex problems compared with the coupled method of the BEM and PD. The accuracy of this coupled method is demonstrated by one example of accuracy analysis for single coupled and multiple coupled interfaces, and three examples of fracture propagation analysis (two pre-determined cracks and one spontaneous crack). The results show that the coupled method has a high accuracy. Furthermore, it is recommended that the spacing of the common points be set equal to the spacing of the PD material points so that the accuracy of the coupled method can be maximized. Finally, the cracking forms of a square plate with different shaped holes are explored. It shows that the proposed coupled method has potential for engineering applications.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104453"},"PeriodicalIF":3.5,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of parametric model order reduction methods to solve magneto-quasistatic and electro-quasistatic problems 参数模型降阶方法解决磁准静态和电准静态问题的比较
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-15 DOI: 10.1016/j.finel.2025.104444
Wei Chen, Thomas Henneron, Stéphane Clénet
{"title":"Comparison of parametric model order reduction methods to solve magneto-quasistatic and electro-quasistatic problems","authors":"Wei Chen,&nbsp;Thomas Henneron,&nbsp;Stéphane Clénet","doi":"10.1016/j.finel.2025.104444","DOIUrl":"10.1016/j.finel.2025.104444","url":null,"abstract":"<div><div>In this paper, we compare two parametric model order reduction methods, the multi-moment matching method and the interpolation of projection subspaces method for the magneto-quasistatic (MQS) and electro-quasistatic (EQS) problems derived from Maxwell’s equations and discretized with the Finite Element (FE) method. The two problems considered are both governed by the differential–algebraic equations. The material characteristic parameters as well as the geometry parameters have been considered. The applications are two realistic test cases: an EQS model of a transformer bushing under insulation defect uncertainty and a MQS model of a planar inductor with geometric and material variations. The result shows that both methods approximate well global quantities, such as the current or the voltage, as well as the local quantities like field distributions. The multi-moment matching method remains always faster in the online stage, since the reduced basis is not parameter dependent, requiring no reduced basis calculation. The multi-moment matching method requires an affine decomposition of the FE model, which is not easy to obtain when considering geometry parameters. A hybrid method is proposed and tested leading to more accurate results than the interpolation of projection subspaces method but much easier to implement than the multi-moment matching method.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104444"},"PeriodicalIF":3.5,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscale FEM model of concrete: Statistical assessment of inherent stress concentrations in dependence on phase heterogeneity 混凝土的中尺度有限元模型:依赖于相非均质性的固有应力集中的统计评估
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-13 DOI: 10.1016/j.finel.2025.104442
Jan Mašek, Petr Miarka
{"title":"Mesoscale FEM model of concrete: Statistical assessment of inherent stress concentrations in dependence on phase heterogeneity","authors":"Jan Mašek,&nbsp;Petr Miarka","doi":"10.1016/j.finel.2025.104442","DOIUrl":"10.1016/j.finel.2025.104442","url":null,"abstract":"<div><div>Concrete heterogeneity originates from its production process, which involves bonding aggregates with a binder matrix. This study presents a mesoscale finite element model (MFEM) that offers detailed insights into the fracture process at the aggregate–cement matrix interface, focusing on one of concrete’s key properties: its mechanical response. Unlike discrete models, which often average out critical stress concentrations within the mesostructure, the MFEM approach captures detailed stress distributions, revealing localized effects crucial for understanding damage evolution. Although computationally more demanding, the MFEM leverages modern high-performance computing (HPC) to provide a detailed description of the stress field and material damage across different phases and interfaces. The proposed modeling framework integrates a collision-checked aggregate generation procedure, Voronoi-based mesostructure construction, and adaptive 3D meshing, forming a reusable methodology for stress analysis in heterogeneous composites. This approach offers transparent, physically interpretable parameterization of phase properties in contrast to black-box discrete models. Another methodological contribution is the statistical post-processing of stress data using histogram-based analysis across cross-sectional planes. This enables quantitative evaluation of stress concentration distributions, providing valuable insights into the mesoscale mechanical response and serving as a useful visualization tool for researchers working on heterogeneous material modeling. Various matrix-to-aggregate stiffness ratios are considered to evaluate the influence of material heterogeneity on the stress field. The results are based on a statistical evaluation of stress concentrations arising from variations in material stiffness. The model is applied to investigate the impact of using recycled crushed bricks as aggregates in concrete, with particular emphasis on the stiffness mismatch between the matrix and aggregates. The study examines how this stiffness contrast affects stress distribution and ultimately influences the composite’s failure mechanisms. Beyond this application, the MFEM framework provides a foundation for further investigations into nonlinear fracture processes, fatigue analysis, and mechanical optimization of alternative aggregate-matrix systems.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104442"},"PeriodicalIF":3.5,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simplified gradient-enhanced damage model based on energy limiters for crack propagation under time-dependent loading 基于能量限制器的时效加载下裂纹扩展梯度增强损伤简化模型
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-13 DOI: 10.1016/j.finel.2025.104443
Hung Thanh Tran
{"title":"A simplified gradient-enhanced damage model based on energy limiters for crack propagation under time-dependent loading","authors":"Hung Thanh Tran","doi":"10.1016/j.finel.2025.104443","DOIUrl":"10.1016/j.finel.2025.104443","url":null,"abstract":"<div><div>This paper presents the development and investigation of a simplified energy limiter-based nonlocal damage model for dynamic crack propagation in brittle media. The key idea underlying the proposed model is that crack growth under impact loading is primarily influenced by the tensile component of the strain tensor. Consequently, the energy-based damage-driving term is simplified to a strain-based counterpart, which is integrated using the first principal strain. This simplification leads to a model that is not only easier to implement but also more effective in capturing dynamic crack propagation compared to the original theory. In addition, the computational framework incorporates an energy limiter-based gradient damage formulation with a damage threshold, enabling natural crack initiation and propagation while significantly reducing spurious damage. One of the distinctive features of the proposed approach is the treatment of the nonlocal crack field as a primary unknown, alongside displacements. This allows the use of identical shape functions for both fields within the finite element analysis, enhancing consistency and computational efficiency. Consistent with classical continuum damage mechanics, the model can accurately simulate arbitrary and complex multiple crack paths, including three-dimensional (3D) crack propagation. Furthermore, to provide a more efficient numerical framework under time-dependent loading conditions with complex crack patterns, an explicit dynamic fracture algorithm is employed. This algorithm utilizes the central difference method, the row-sum technique for mass lumping, and a consistent procedure for updating the kinematic and damage-related terms. The advantages and modeling capabilities of the proposed strain-based gradient-enhanced damage formulation are demonstrated through representative numerical examples of dynamic fracture under shear, tension, and compression loading scenarios.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104443"},"PeriodicalIF":3.5,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POD-RBF hyper-reduction method for fast finite element analysis of nonlinear dynamic problems 非线性动力问题快速有限元分析的POD-RBF超约简方法
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-13 DOI: 10.1016/j.finel.2025.104455
Lam Vu-Tuong Nguyen, Hyun-Gyu Kim
{"title":"POD-RBF hyper-reduction method for fast finite element analysis of nonlinear dynamic problems","authors":"Lam Vu-Tuong Nguyen,&nbsp;Hyun-Gyu Kim","doi":"10.1016/j.finel.2025.104455","DOIUrl":"10.1016/j.finel.2025.104455","url":null,"abstract":"<div><div>This paper proposes a new hyper-reduction method for fast finite element analysis of nonlinear dynamic problems using proper orthogonal decomposition (POD) and radial basis function (RBF) interpolation. In the offline stage, displacement and internal force snapshots are collected from full-order FE simulations of nonlinear dynamic problems with training load cases. POD basis vectors are extracted from the displacement snapshots using the singular value decomposition (SVD). RBF coefficients for the internal force snapshots are also computed in the offline stage. The proposed POD-RBF hyper-reduction method efficiently estimates the reduced internal force vectors and the reduced tangent stiffness matrices using RBF interpolation with respect to reduced generalized coordinates. A snapshot selection strategy combining K-means clustering and greedy sampling algorithms is used to reduce the size of solution snapshots, which further enhances the efficiency of the present method. Numerical results show that the POD-RBF hyper-reduction method can be efficiently and effectively used to quickly solve nonlinear dynamic problems in a reduced-order space.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104455"},"PeriodicalIF":3.5,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity analysis of any hyperelastic evaluation functions coupled with adjoint method and automatic differentiation 结合伴随法和自动微分的超弹性评价函数敏感性分析
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-12 DOI: 10.1016/j.finel.2025.104440
S. Ogawa, K. Yonekura, K. Suzuki
{"title":"Sensitivity analysis of any hyperelastic evaluation functions coupled with adjoint method and automatic differentiation","authors":"S. Ogawa,&nbsp;K. Yonekura,&nbsp;K. Suzuki","doi":"10.1016/j.finel.2025.104440","DOIUrl":"10.1016/j.finel.2025.104440","url":null,"abstract":"<div><div>This study introduces a new sensitivity analysis method for the topology optimization of a static hyperelastic material, which combines the adjoint variable method with automatic differentiation (AD). The adjoint variable method, frequently used in sensitivity analysis, requires mathematical formulations. Therefore, any changes in the design problem require reformulating the sensitivity analysis and updating the calculation program. The proposed method allows for the calculation of design sensitivities without being tied to specific evaluation functions, constitutive laws, or interpolation methods. This method effectively addresses the considerable memory requirements often associated with AD. To showcase the versatility of the proposed approach, we assessed both the compliance and the maximum von Mises stress of the second Piola–Kirchhoff stress tensor. We examined two hyperelastic materials: St. Venant-Kirchhoff, Neo-Hookean, and Mooney–Rivlin. For broader applicability, we used the discrete material optimization (DMO) method to address multimaterial problems, evaluating the adaptability in the interpolation of material properties based on the design variables. Through numerical examples, we validated the sensitivity analysis, analyzed the computational time and memory usage, and confirmed the efficacy of the proposed method. Examples involving two-dimensional problems highlight the practical application of this method in topology optimization.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104440"},"PeriodicalIF":3.5,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric compensation of process-induced deformation in hybrid unidirectional/woven CFRP composites with multi-layup sequence using a physics-driven reverse deformation approach 基于物理驱动反向变形方法的复合材料过程变形几何补偿
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2025-09-11 DOI: 10.1016/j.finel.2025.104446
Dong-Hyeop Kim , Sang-Woo Kim
{"title":"Geometric compensation of process-induced deformation in hybrid unidirectional/woven CFRP composites with multi-layup sequence using a physics-driven reverse deformation approach","authors":"Dong-Hyeop Kim ,&nbsp;Sang-Woo Kim","doi":"10.1016/j.finel.2025.104446","DOIUrl":"10.1016/j.finel.2025.104446","url":null,"abstract":"<div><div>This study proposes a novel physics-based geometric compensation methodology to mitigate process-induced deformation (PID) in hybrid unidirectional/woven CFRP composite structures. Reverse deformation to compensate PID is induced by inverting the layup sequence, while the deformation magnitude is precisely adjusted using scaling factors, which are determined via fitting-based optimization and applied to thermochemical strain coefficients. The methodology is implemented through thermo-mechanical simulations using the finite element method, integrating cure-dependent material behavior, effective material properties, and thermal and chemical strains to accurately predict PID. The capability of the proposed methodology is demonstrated through extensive simulations of hybrid CFRP laminates, specifically incorporating multiple layup sequences and thickness configurations within a single laminate to reflect realistic structural design configurations encountered in composite manufacturing. In all simulation results, the optimized compensation reduced nodal displacements by more than 93%, resulting in significant improvements in both local and global geometric accuracy. The proposed methodology comprehensively considers complex cure-induced physical behaviors, enabling accurate, robust, and highly efficient nodal-level deformation compensation and providing practical applicability across a wide range of composite structures, including both unidirectional and textile-reinforced laminates.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104446"},"PeriodicalIF":3.5,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信