{"title":"Temperature fields calculation in heat exchangers using the finite element method","authors":"Jose M. Chaquet , Pedro Galán del Sastre","doi":"10.1016/j.finel.2025.104385","DOIUrl":null,"url":null,"abstract":"<div><div>Heat exchanger (HEX) design is an optimization process that seeks to maximize heat transfer between two fluids while minimizing pressure drops. There are several conceptual design methods based on integral equations that only work with specific temperature values at the inlet and outlet of the HEX. However, it is very interesting to obtain approximate temperature distributions in these early stages of analysis to verify that the design criteria are met. To do this, it is necessary to solve systems of differential equations depending on the HEX configuration. Under certain assumptions, these equations have an analytical solution. However, in most cases it is only possible to obtain a numerical approximation. This work presents the solution of these equations for 6 HEX arrangements based on the finite element method. After validating the results in the cases whose analytical solution is known, the proposed method is applied to two realistic cases. Firstly, the effectiveness of a double-pass crossflow heat exchanger is studied. Since the inlet distributions in the second HEX module are not constant, no analytical solution is available. The numerical solution allows to analyze under what conditions the second pass is not effective due to thermal inversion. Secondly, a simplified 2D geometry of a compact intercooler HEX for hydrogen-fueled aero engine is solved. Specifically, an analysis is carried out to locate possible malfunctions due to obstructions of the fluid flows making use only of the metal temperature distributions at the outlets.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"249 ","pages":"Article 104385"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25000745","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Heat exchanger (HEX) design is an optimization process that seeks to maximize heat transfer between two fluids while minimizing pressure drops. There are several conceptual design methods based on integral equations that only work with specific temperature values at the inlet and outlet of the HEX. However, it is very interesting to obtain approximate temperature distributions in these early stages of analysis to verify that the design criteria are met. To do this, it is necessary to solve systems of differential equations depending on the HEX configuration. Under certain assumptions, these equations have an analytical solution. However, in most cases it is only possible to obtain a numerical approximation. This work presents the solution of these equations for 6 HEX arrangements based on the finite element method. After validating the results in the cases whose analytical solution is known, the proposed method is applied to two realistic cases. Firstly, the effectiveness of a double-pass crossflow heat exchanger is studied. Since the inlet distributions in the second HEX module are not constant, no analytical solution is available. The numerical solution allows to analyze under what conditions the second pass is not effective due to thermal inversion. Secondly, a simplified 2D geometry of a compact intercooler HEX for hydrogen-fueled aero engine is solved. Specifically, an analysis is carried out to locate possible malfunctions due to obstructions of the fluid flows making use only of the metal temperature distributions at the outlets.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.