{"title":"A geometric look at MHD and the Braginsky dynamo","authors":"Andrew D. Gilbert, J. Vanneste","doi":"10.1080/03091929.2020.1839896","DOIUrl":"https://doi.org/10.1080/03091929.2020.1839896","url":null,"abstract":"ABSTRACT This paper considers magnetohydrodynamics (MHD) and some of its applications from the perspective of differential geometry, considering the dynamics of an ideal fluid flow and magnetic field on a general three-dimensional manifold, equipped with a metric and an induced volume form. The benefit of this level of abstraction is that it clarifies basic aspects of fluid dynamics such as how certain quantities are transported, how they transform under the action of mappings (e.g. the flow map between Lagrangian labels and Eulerian positions), how conservation laws arise, and the origin of certain approximations that preserve the mathematical structure of classical mechanics. First, the governing equations for ideal MHD are derived in a general setting by means of an action principle and making use of Lie derivatives. The way in which these equations transform under a pull back by the map taking the position of a fluid parcel to a background location is detailed. This is then used to parameterise Alfvén waves using concepts of pseudomomentum and pseudofield, in parallel with the development of Generalised Lagrangian Mean theory in hydrodynamics. Finally non-ideal MHD is considered with a sketch of the development of the Braginsky -dynamo in a general setting. Expressions for the α-tensor are obtained, including a novel geometric formulation in terms of connection coefficients, and related to formulae found elsewhere in the literature.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"119 1","pages":"436 - 471"},"PeriodicalIF":1.3,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77067145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Philidet, C. Gissinger, F. Lignières, L. Petitdemange
{"title":"Magnetohydrodynamics of stably stratified regions in planets and stars","authors":"J. Philidet, C. Gissinger, F. Lignières, L. Petitdemange","doi":"10.1080/03091929.2019.1670827","DOIUrl":"https://doi.org/10.1080/03091929.2019.1670827","url":null,"abstract":"ABSTRACT Stably stratified layers are present in stellar interiors (radiative zones) as well as planetary interiors – recent observations and theoretical studies of the Earth's magnetic field seem to indicate the presence of a thin, stably stratified layer at the top of the liquid outer core. We present direct numerical simulations of this region, which is modelled as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. For strong magnetic fields, a super-rotating shear layer, rotating nearly 30% faster than the imposed rotation rate difference between the inner convective dynamo region and the outer boundary, is generated in the stably stratified region. In the Earth context, and contrary to what was previously believed, we show that this super-rotation may extend towards the Earth magnetostrophic regime if the density stratification is sufficiently large. The corresponding differential rotation triggers magnetohydrodynamic instabilities and waves in the stratified region, which feature growth rates comparable to the observed timescale for geomagnetic secular variations and jerks. In the stellar context, we perform a linear analysis which shows that similar instabilities are likely to arise, and we argue that it may play a role in explaining the observed magnetic dichotomy among intermediate-mass stars.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"76 1","pages":"336 - 355"},"PeriodicalIF":1.3,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83038453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Helicity and winding fluxes as indicators of twisted flux emergence","authors":"D. MacTaggart, C. Prior","doi":"10.1080/03091929.2020.1740925","DOIUrl":"https://doi.org/10.1080/03091929.2020.1740925","url":null,"abstract":"Evidence for the emergence of twisted flux tubes into the solar atmosphere has, so far, come from indirect signatures. In this work, we investigate the topological input of twisted flux tube emergence directly by studying helicity and winding fluxes. In magnetohydrodynamic simulations with domains spanning from the top of the convection zone to the lower corona, we simulate the emergence of twisted flux tubes with a range of different initial field strengths. One important feature of this work is the inclusion of a convectively unstable layer beneath the photosphere. We find approximately self-similar behaviour in the helicity input for the different field strengths considered. As the tubes rise and reach the photosphere, there is a strong input of negative helicity since we consider left-handed twisted tubes. This phase is then followed by a reduction of the negative input and, for low initial field strengths, a net positive helicity input. This phase corresponds to the growing influence of convection on the field and the development of serpentine field structures during emergence. The winding flux can be used to detect when the twisted cores of the tubes reach the photosphere, giving clear information about the input of topologically complex magnetic field into the solar atmosphere. In short, the helicity and winding fluxes can provide much information about how a magnetic field emerges that is not directly available from other sources, such as magnetograms. In evaluating the helicity content of these simulations, we test numerous means for creating synthetic magnetograms, including methods which account for both the evolving geometry and the finite extent of the photosphere. Whilst the general qualitative behaviours are similar in each case, the different forms of averaging do affect the helicity and winding inputs quantitatively.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"37 1","pages":"85 - 124"},"PeriodicalIF":1.3,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73479884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Driving solar coronal MHD simulations on high-performance computers","authors":"P. Bourdin","doi":"10.1080/03091929.2019.1643849","DOIUrl":"https://doi.org/10.1080/03091929.2019.1643849","url":null,"abstract":"ABSTRACT The quality of today's research is often tightly limited to the available computing power and scalability of codes to many processors. For example, tackling the problem of heating the solar corona requires a most realistic description of the plasma dynamics and the magnetic field. Numerically solving such a magneto-hydrodynamical (MHD) description of a small active region (AR) on the Sun requires millions of computation hours on current high-performance computing (HPC) hardware. The aim of this work is to describe methods for an efficient parallelisation of boundary conditions and data input/output (IO) strategies that allow for a better scaling towards thousands of processors (CPUs). The Pencil Code is tested before and after optimisation to compare the performance and scalability of a coronal MHD model above an AR. We present a novel boundary condition for non-vertical magnetic fields in the photosphere, where we approach the realistic pressure increase below the photosphere. With that, magnetic flux bundles become narrower with depth and the flux density increases accordingly. The scalability is improved by more than one order of magnitude through the HPC-friendly boundary conditions and IO strategies. This work describes also the necessary nudging methods to drive the MHD model with observed magnetic fields from the Sun's photosphere. In addition, we present the upper and lower atmospheric boundary conditions (photospheric and towards the outer corona), including swamp layers to diminish perturbations before they reach the boundaries. Altogether, these methods enable more realistic 3D MHD simulations than previous models regarding the coronal heating problem above an AR – simply because of the ability to use a large amount of CPUs efficiently in parallel.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"100 1","pages":"235 - 260"},"PeriodicalIF":1.3,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79307679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The interaction of a mode-1 internal solitary wave with a step and the generation of mode-2 waves","authors":"Zihua Liu, R. Grimshaw, E. Johnson","doi":"10.1080/03091929.2019.1636046","DOIUrl":"https://doi.org/10.1080/03091929.2019.1636046","url":null,"abstract":"ABSTRACT In this study, we examine the transformation of a mode-1 internal solitary wave incident on a bottom step, and the consequent generation of mode-2 internal solitary waves. A linear long-wave theory of mode coupling in the vicinity of the step is used to estimate the mode-1 and mode-2 wave reflection and transmission coefficients, and hence the energy fluxes. Away from the step, the wave evolution of the transmitted and reflected waves is simulated by the Korteweg–de Vries equation. Specific calculations are made using a three-layer fluid model. Three different regimes based on the layer thicknesses are examined and discussed in detail for either depression or elevation mode-1 incident waves. The common features found are that the transmitted waves (mainly mode-1) are the dominant part; most of the incident energy is transmitted and only a small part is reflected. The amplitudes of the generated mode-2 waves and the reflected mode-1 waves increase when either the upper- or middle-layer thickness increases. When the lower layer is thin enough, the amplitude of the transmitted mode-2 wave can be larger than the mode-1 waves, and the reflected energy can increase considerably which we infer may be due to a blocking effect of the step on the lower layer. The evolution away from the step is either fission into several solitary waves, or the development of a rarefaction wave followed by an undular bore, depending on the relative signs of the wave amplitudes and the nonlinear coefficient in the Korteweg–de Vries equation.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"38 1","pages":"327 - 347"},"PeriodicalIF":1.3,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80018171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The onset of thermo-compositional convection in rotating spherical shells","authors":"L. Silva, J. Mather, Radostin D Simitev","doi":"10.1080/03091929.2019.1640875","DOIUrl":"https://doi.org/10.1080/03091929.2019.1640875","url":null,"abstract":"ABSTRACT Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating spherical shell can exhibit a rather large number of behaviours often distinct from that of the single diffusive system. In order to understand how the differences in thermal and compositional molecular diffusivities determine the dynamics of thermo-compositional convection we investigate numerically the linear onset of convective instability in a double-diffusive setup. We construct an alternative equivalent formulation of the non-dimensional equations where the linearised double-diffusive problem is described by an effective Rayleigh number, , measuring the amplitude of the combined buoyancy driving, and a second parameter, α, measuring the mixing of the thermal and compositional contributions. This formulation is useful in that it allows for the analysis of several limiting cases and reveals dynamical similarities in the parameters space which are not obvious otherwise. We analyse the structure of the critical curves in this space, explaining asymptotic behaviours in α, transitions between inertial and diffusive regimes, and transitions between large-scale (fast drift) and small-scale (slow drift) convection. We perform this analysis for a variety of diffusivities, rotation rates and shell aspect ratios showing where and when new modes of convection take place.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"14 1","pages":"377 - 404"},"PeriodicalIF":1.3,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80667811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydro-elastic wave proliferation over an impermeable seabed with bottom deformation","authors":"M. Sarangi, S. Mohapatra","doi":"10.1080/03091929.2019.1584296","DOIUrl":"https://doi.org/10.1080/03091929.2019.1584296","url":null,"abstract":"ABSTRACT A hydro-elastic frame has been considered to investigate the proliferation of waves over small base deformation on an infinitely extended flexible seabed. The flexible base surface is assumed as a thin elastic plate of very small thickness and it depends on the Euler–Bernoulli beam equation. For any particular frequency, there are two different modes of time-harmonic propagating wave exists rather than one mode of propagating wave along the positive horizontal direction. The waves with smaller wavenumber spread along the free-surface of the sea (say, free-surface mode) and the waves with higher wavenumber spread along the flexible base surface (say, flexural mode). A simplified perturbation approach is utilised to bring down the entire equations which govern the original boundary value problem (bvp) to a less complex bvp for the first-order velocity potential function. The first-order potential function along with the first-order reflection and transmission coefficients for both modes are calculated by a procedure based upon Fourier transform approach. A shape of sinusoidal swells flexible base surface is taken as an example to approve the scientific results. It is observed that when the train of normal incident propagating wave spreads over base distortion because of either the free-surface unsettling influence or the flexural wave movement in the sea, the reflected and transmitted energy are always feasible to be exchanged from one particular wave mode to another wave mode. Furthermore, we notice that the realistic changes in the flexural rigidity behaviour on the flexible base surface of the sea have a significant effect on the problem of water wave proliferation over small base deformation. Moreover, the energy conservation equation is derived with the help of the Green's integral theorem. The results for the values of reflection and transmission coefficients obtained for both the free-surface unsettling influence as well as flexural wave movement in the fluid are found to satisfy the energy conservation equation almost accurately.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"66 1","pages":"303 - 325"},"PeriodicalIF":1.3,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87407007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjia Min, Qun Li, Peiwen Zhang, Zhenhua Xu, B. Yin
{"title":"Generation and evolution of internal solitary waves in the southern Taiwan Strait","authors":"Wenjia Min, Qun Li, Peiwen Zhang, Zhenhua Xu, B. Yin","doi":"10.1080/03091929.2019.1590568","DOIUrl":"https://doi.org/10.1080/03091929.2019.1590568","url":null,"abstract":"ABSTRACT The generation processes and potential energy sources of internal solitary waves (ISWs) in the southern Taiwan Strait are investigated by driving a high resolution non-hydrostatic numerical model with realistic background conditions. Two main types of ISWs are clarified according to their different energy sources. One is generated by the nonlinear disintegration of remote internal tides emanating from Luzon Strait, and the other type is generated by local tide-topography interaction at the continental slope. The basic properties and evolution processes differ between these two kinds of ISWs. The waves originated from the remote internal tides at Luzon Strait have amplitudes comparable to previous field observations. In contrast, the ISWs generated locally are much weaker than observed waves, even in the presence of a steady offshore background current, which intensifies the generation of onshore ISWs. The ISWs induced by remotely generated M2 internal tides are stronger than those induced by K1 internal tides, and the fraction of internal wave energy transmitted onto the shelf is not significantly influenced by the intensity of remotely generated internal tides.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"16 1","pages":"287 - 302"},"PeriodicalIF":1.3,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87174721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in geodynamo modelling","authors":"Johannes Wicht, S. Sanchez","doi":"10.1080/03091929.2019.1597074","DOIUrl":"https://doi.org/10.1080/03091929.2019.1597074","url":null,"abstract":"ABSTRACT This paper reviews the remarkable developments in numerical geodynamo simulations over the last few years. Simulations with Ekman numbers as low as are now within reach and more and more details of the observed field are recovered by computer models. However, some newer experimental and ab initio results suggest a rather large thermal conductivity for the liquid iron alloy in Earth's core. More heat would then simply be conducted down the core adiabat and would not be available for driving the dynamo process. The current status of this topic is reported and alternative driving scenarios are discussed. The paper then addresses the question whether dynamo simulations obey the magnetostrophic force balance that characterises the geodynamo and proceeds with discussing related problems like scaling laws and torsional oscillations. Finally, recent developments in geomagnetic data assimilation are reviewed, where geomagnetic data and dynamo simulations are coupled to form a tool for interpreting observations and predicting the future evolution of Earth's magnetic field.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"2019 1","pages":"2 - 50"},"PeriodicalIF":1.3,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72559303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of anisotropic diffusion on onset of rotating magnetoconvection in plane layer; stationary modes","authors":"E. Filippi, J. Brestenský, T. Šoltis","doi":"10.1080/03091929.2019.1571585","DOIUrl":"https://doi.org/10.1080/03091929.2019.1571585","url":null,"abstract":"ABSTRACT Turbulence in the Earth's outer core not only increases all diffusive coefficients, but it can lead to their anisotropic properties. Therefore, the model of rotating magnetoconvection in horizontal plane layer rotating about vertical axis and permeated by homogeneous horizontal magnetic field, influenced by anisotropic diffusivities, viscosity and thermal diffusivity, is advanced by considering the magnetic diffusivity as anisotropic too. The case of full anisotropy, i.e. all coefficients anisotropic, is compared with both the case possessing isotropic diffusion coefficients and the case of partial anisotropy, i.e. mixed case with isotropic and anisotropic diffusive coefficients (viscosity and thermal diffusivity anisotropic and magnetic diffusivity isotropic). The existence and preference of instabilities is sensitive to all non-dimensional parameters, as well as on anisotropic parameter, the ratio of horizontal and vertical diffusivities. Two types of anisotropy, BM (introduced by Braginsky and Meytlis) and SA (stratification anisotropy) are studied. BM as well as SA were applied by Šoltis and Brestenský to the study of the partial anisotropy; this study is extended, in this paper, to full anisotropy cases (full SA and full BM) and it is shown that the style of convection given by the onset of stationary modes is more affected by anisotropic diffusivities in BM than in SA anisotropy. The important influence of strong anisotropies in the Earth's core dynamics is stressed.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"64 1","pages":"106 - 80"},"PeriodicalIF":1.3,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84224117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}