J. Philidet, C. Gissinger, F. Lignières, L. Petitdemange
{"title":"行星和恒星中稳定分层区域的磁流体动力学","authors":"J. Philidet, C. Gissinger, F. Lignières, L. Petitdemange","doi":"10.1080/03091929.2019.1670827","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stably stratified layers are present in stellar interiors (radiative zones) as well as planetary interiors – recent observations and theoretical studies of the Earth's magnetic field seem to indicate the presence of a thin, stably stratified layer at the top of the liquid outer core. We present direct numerical simulations of this region, which is modelled as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. For strong magnetic fields, a super-rotating shear layer, rotating nearly 30% faster than the imposed rotation rate difference between the inner convective dynamo region and the outer boundary, is generated in the stably stratified region. In the Earth context, and contrary to what was previously believed, we show that this super-rotation may extend towards the Earth magnetostrophic regime if the density stratification is sufficiently large. The corresponding differential rotation triggers magnetohydrodynamic instabilities and waves in the stratified region, which feature growth rates comparable to the observed timescale for geomagnetic secular variations and jerks. In the stellar context, we perform a linear analysis which shows that similar instabilities are likely to arise, and we argue that it may play a role in explaining the observed magnetic dichotomy among intermediate-mass stars.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"76 1","pages":"336 - 355"},"PeriodicalIF":1.1000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Magnetohydrodynamics of stably stratified regions in planets and stars\",\"authors\":\"J. Philidet, C. Gissinger, F. Lignières, L. Petitdemange\",\"doi\":\"10.1080/03091929.2019.1670827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Stably stratified layers are present in stellar interiors (radiative zones) as well as planetary interiors – recent observations and theoretical studies of the Earth's magnetic field seem to indicate the presence of a thin, stably stratified layer at the top of the liquid outer core. We present direct numerical simulations of this region, which is modelled as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. For strong magnetic fields, a super-rotating shear layer, rotating nearly 30% faster than the imposed rotation rate difference between the inner convective dynamo region and the outer boundary, is generated in the stably stratified region. In the Earth context, and contrary to what was previously believed, we show that this super-rotation may extend towards the Earth magnetostrophic regime if the density stratification is sufficiently large. The corresponding differential rotation triggers magnetohydrodynamic instabilities and waves in the stratified region, which feature growth rates comparable to the observed timescale for geomagnetic secular variations and jerks. In the stellar context, we perform a linear analysis which shows that similar instabilities are likely to arise, and we argue that it may play a role in explaining the observed magnetic dichotomy among intermediate-mass stars.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"76 1\",\"pages\":\"336 - 355\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2019.1670827\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2019.1670827","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Magnetohydrodynamics of stably stratified regions in planets and stars
ABSTRACT Stably stratified layers are present in stellar interiors (radiative zones) as well as planetary interiors – recent observations and theoretical studies of the Earth's magnetic field seem to indicate the presence of a thin, stably stratified layer at the top of the liquid outer core. We present direct numerical simulations of this region, which is modelled as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. For strong magnetic fields, a super-rotating shear layer, rotating nearly 30% faster than the imposed rotation rate difference between the inner convective dynamo region and the outer boundary, is generated in the stably stratified region. In the Earth context, and contrary to what was previously believed, we show that this super-rotation may extend towards the Earth magnetostrophic regime if the density stratification is sufficiently large. The corresponding differential rotation triggers magnetohydrodynamic instabilities and waves in the stratified region, which feature growth rates comparable to the observed timescale for geomagnetic secular variations and jerks. In the stellar context, we perform a linear analysis which shows that similar instabilities are likely to arise, and we argue that it may play a role in explaining the observed magnetic dichotomy among intermediate-mass stars.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.