Journal of Gene Medicine最新文献

筛选
英文 中文
Interleukin-17A educated hepatic stellate cells promote hepatocellular carcinoma occurrence through fibroblast activation protein expression 白细胞介素-17A教育的肝星状细胞通过成纤维细胞活化蛋白的表达促进肝细胞癌的发生。
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-06-11 DOI: 10.1002/jgm.3693
Jun-Sheng Ni, Si-Yuan Fu, Zong-Yan Wang, Wen-Bin Ding, Jian Huang, Xing-Gang Guo, Fang-Ming Gu
{"title":"Interleukin-17A educated hepatic stellate cells promote hepatocellular carcinoma occurrence through fibroblast activation protein expression","authors":"Jun-Sheng Ni,&nbsp;Si-Yuan Fu,&nbsp;Zong-Yan Wang,&nbsp;Wen-Bin Ding,&nbsp;Jian Huang,&nbsp;Xing-Gang Guo,&nbsp;Fang-Ming Gu","doi":"10.1002/jgm.3693","DOIUrl":"10.1002/jgm.3693","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Liver cancer is typified by a complex inflammatory tumor microenvironment, where an array of cytokines and stromal cells orchestrate a milieu that significantly influences tumorigenesis. Interleukin-17A (IL-17A), a pivotal pro-inflammatory cytokine predominantly secreted by Th17 cells, is known to play a substantial role in the etiology and progression of liver cancer. However, the precise mechanism by which IL-17A engages with hepatic stellate cells (HSCs) to facilitate the development of hepatocellular carcinoma (HCC) remains to be fully elucidated. This investigation seeks to unravel the interplay between IL-17A and HSCs in the context of HCC.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>An HCC model was established in male Sprague–Dawley rats using diethylnitrosamine to explore the roles of IL-17A and HSCs in HCC pathogenesis. In vivo overexpression of <i>Il17a</i> was achieved using adeno-associated virus. A suite of molecular techniques, including RT-qPCR, enzyme-linked immunosorbent assays, Western blotting, cell counting kit-8 assays and colony formation assays, was employed for in vitro analyses.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The study findings indicate that IL-17A is a key mediator in HCC promotion, primarily through the activation of hepatic progenitor cells (HPCs). This pro-tumorigenic influence appears to be mediated by HSCs, rather than through a direct effect on HPCs. Notably, IL-17A-induced expression of fibroblast activation protein (FAP) in HSCs emerged as a critical factor in HCC progression. Silencing <i>Fap</i> in IL-17A-stimulated HSCs was observed to reverse the HCC-promoting effects of HSCs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The collective evidence from this study implicates the IL-17A/FAP signaling axis within HSCs as a contributor to HCC development by enhancing HPC activation. These findings bolster the potential of IL-17A as a diagnostic and preventative target for HCC, offering new avenues for therapeutic intervention.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the heterogeneity of the tumor microenvironment in lung adenocarcinoma and squamous carcinoma through single-cell transcriptomic analysis: Implications for distinct immunotherapy outcomes 通过单细胞转录组分析了解肺腺癌和鳞癌肿瘤微环境的异质性:对不同免疫疗法结果的影响
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-06-07 DOI: 10.1002/jgm.3694
Xinyun Fang, Dianke Li, Shiyue Wan, Junjie Hu, Peng Zhang, Dai Jie, Linsong Chen, Gening Jiang, Nan Song
{"title":"Insights into the heterogeneity of the tumor microenvironment in lung adenocarcinoma and squamous carcinoma through single-cell transcriptomic analysis: Implications for distinct immunotherapy outcomes","authors":"Xinyun Fang,&nbsp;Dianke Li,&nbsp;Shiyue Wan,&nbsp;Junjie Hu,&nbsp;Peng Zhang,&nbsp;Dai Jie,&nbsp;Linsong Chen,&nbsp;Gening Jiang,&nbsp;Nan Song","doi":"10.1002/jgm.3694","DOIUrl":"10.1002/jgm.3694","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Immune checkpoint blockade has emerged as a key strategy to the therapy landscape of non-small cell lung cancer (NSCLC). However, notable differences in immunotherapeutic outcomes exist between the two primary NSCLC subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This disparity may stem from the tumor immune microenvironment's heterogeneity at the transcriptome level.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>By integrative analysis of transcriptomic characterization of 38 NSCLC patients by single-cell RNA sequencing, the present study revealed a distinct tumor microenvironment (TME) between LUAD and LUSC, with relevant results further confirmed in bulk transcriptomic and multiplex immunofluorescence (mIF) validation cohort of neoadjuvant immunotherapy patients.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>LUAD exhibited a more active immune microenvironment compared to LUSC. This included highly expression of HLA I/II in cancer cells, reinforced antigen presentation potential of dendritic cells and enhanced cytotoxic activity observed in T/NK cells. In LUSC, cancer cells highly expressed genes belonging to the aldo-keto reductases, glutathione <i>S</i>-transferases and aldehyde dehydrogenase family, negatively correlating with immunotherapy outcomes in the validation cohort of our center. Further analysis revealed elevated infiltrated cancer-associated fibroblasts (CAFs) in LUSC, which was corroborated in The Cancer Genome Atlas cohort. Corresponding increased infiltration of ADH1B+ CAFs in major pathologic response (MPR) patients and the higher presence of FAP+ CAFs in non-MPR patients were demonstrated by multiplex mIF. Moreover, upregulating immunosuppressive extracellular matrix remodeling was identified in LUSC.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These comprehensive analyses advance the understanding of the differences in TME between LUAD and LUSC, offering insights for patient selection and developing subtype-specific treatment strategies.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysophosphatidic acid promotes ESCC progression by increasing the level of CCL2 secreted by esophageal epithelial cells 溶血磷脂酸通过提高食管上皮细胞分泌的 CCL2 水平促进 ESCC 的进展
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-06-05 DOI: 10.1002/jgm.3708
Hui Ma, Xiaoqian Ma, Lingyu Qi, Qian Zhang, Tiange Wang, Qingdong Guo, Peng Li, Shutian Zhang, Si Liu
{"title":"Lysophosphatidic acid promotes ESCC progression by increasing the level of CCL2 secreted by esophageal epithelial cells","authors":"Hui Ma,&nbsp;Xiaoqian Ma,&nbsp;Lingyu Qi,&nbsp;Qian Zhang,&nbsp;Tiange Wang,&nbsp;Qingdong Guo,&nbsp;Peng Li,&nbsp;Shutian Zhang,&nbsp;Si Liu","doi":"10.1002/jgm.3708","DOIUrl":"https://doi.org/10.1002/jgm.3708","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA<sub>1</sub>–LPA<sub>6</sub>). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial–mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-<i>κ</i>B signaling pathway through LPA<sub>1/3</sub>, ultimately causing an increase in CCL2 expression and secretion in Het-1a.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our findings, t","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The profile of cytokines against bacterial infection in dental pulp 细胞因子对牙髓细菌感染的影响。
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-05-29 DOI: 10.1002/jgm.3707
Zhongcheng Bai, Jun Liu, Hehuizi Bai
{"title":"The profile of cytokines against bacterial infection in dental pulp","authors":"Zhongcheng Bai,&nbsp;Jun Liu,&nbsp;Hehuizi Bai","doi":"10.1002/jgm.3707","DOIUrl":"10.1002/jgm.3707","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Dental pulp in a confined environment, with little connection to the outside and only a small distribution of immune cells, provides a good research model for investigating how cells respond to bacterial infections through cytokines.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The data of single-cell transcriptome sequencing of healthy and inflamed pulp tissue were downloaded from the GEO dataset. The expression character of 79 cytokines was analyzed based on the expression matrix.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The cytokine secretion profiles of the two populations of pulp cells in healthy dental pulp were associated with vascularization and nervous system development, as well as immune cell regulation. For the three populations of pulp stem cells with stem cell activity in the dental pulp, the secretion of cytokines related to nervous system development, regulation of endothelial cell proliferation and migration, and regulation of immune cell function comprised the characteristics that we observed. The cytokines secreted by T cells and macrophages were more of an immune reserve against pathogenic microorganisms. In the inflammatory state, the spectrum of cytokines secreted by various types of cells in the dental pulp tended to be identical, such that it mainly resisted pathogenic microorganisms.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The cytokine secretion profiles of various cell types in healthy and inflamed dental pulp at the single-cell level are summarized.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetically predicted blood metabolites mediate the association between circulating immune cells and pancreatic cancer: A Mendelian randomization study 基因预测的血液代谢物介导了循环免疫细胞与胰腺癌之间的关联:孟德尔随机化研究
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-05-16 DOI: 10.1002/jgm.3691
Guo Zhao, Yuanting Cai, Yuning Wang, Yuan Fang, Shuhang Wang, Ning Li
{"title":"Genetically predicted blood metabolites mediate the association between circulating immune cells and pancreatic cancer: A Mendelian randomization study","authors":"Guo Zhao,&nbsp;Yuanting Cai,&nbsp;Yuning Wang,&nbsp;Yuan Fang,&nbsp;Shuhang Wang,&nbsp;Ning Li","doi":"10.1002/jgm.3691","DOIUrl":"https://doi.org/10.1002/jgm.3691","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Pancreatic cancer is characterized by metabolic dysregulation and unique immunological profiles. Nevertheless, the comprehensive understanding of immune and metabolic dysregulation of pancreatic cancer remains unclear. In the present study, we aimed to investigate the causal relationship of circulating immune cells and pancreatic cancer and identify the blood metabolites as potential mediators.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The exposure and outcome genome-wide association studies (GWAS) data used in the present study were obtained from the GWAS open-access database (https://gwas.mrcieu.ac.uk). The study used 731 circulating immune cell features, 1400 types of blood metabolites and pancreatic cancer from GWAS. We then performed bidirectional Mendelian randomization (MR) analyses to explore the causal relationships between the circulating immune cells and pancreatic cancer, and two-step MR to discover potential mediating blood metabolites in this process. All statistical analyses were performed in R software. The STROBE-MR (i.e. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization) checklist for the reporting of MR studies was also used.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>MR analysis identified seven types of circulating immune cells causally associated with pancreatic cancer. Furthermore, there was no strong evidence that genetically predicted pancreatic cancer had an effect on these seven types of circulating immune cells. Further two-step MR analysis found 10 types of blood metabolites were causally associated with pancreatic cancer and the associations between circulating CD39<sup>+</sup>CD8<sup>+</sup> T cells and pancreatic cancer were mediated by blood orotates with proportions of 5.18% (<i>p</i> = 0.016).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The present study provides evidence supporting the causal relationships between various circulating immune cells, especially CD39<sup>+</sup>CD8<sup>+</sup> T cells, and pancreatic cancer, with a potential effect mediated by blood orotates. Further research is needed on additional risk factors as potential mediators and establish a comprehensive immunity-metabolism network in pancreatic cancer.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sevoflurane blocks KLF5-mediated transcriptional activation of ITGB2 to inhibit macrophage infiltration in hepatic ischemia/reperfusion injury 七氟烷可阻断KLF5介导的ITGB2转录激活,从而抑制肝缺血再灌注损伤中巨噬细胞的浸润。
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-05-14 DOI: 10.1002/jgm.3692
Ye Li, Weinian Gao, Shuyan Lei, Xiaoning Wu, Tao Yuan, Kai Ma, Kui Chi
{"title":"Sevoflurane blocks KLF5-mediated transcriptional activation of ITGB2 to inhibit macrophage infiltration in hepatic ischemia/reperfusion injury","authors":"Ye Li,&nbsp;Weinian Gao,&nbsp;Shuyan Lei,&nbsp;Xiaoning Wu,&nbsp;Tao Yuan,&nbsp;Kai Ma,&nbsp;Kui Chi","doi":"10.1002/jgm.3692","DOIUrl":"10.1002/jgm.3692","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen–glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell transcriptome analysis reveals heterogeneity of neutrophils in non-small cell lung cancer 单细胞转录组分析揭示了非小细胞肺癌中性粒细胞的异质性。
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-05-12 DOI: 10.1002/jgm.3690
Yunzhen Wang, Ziyi Zhu, Raojun Luo, Wenwen Chen
{"title":"Single-cell transcriptome analysis reveals heterogeneity of neutrophils in non-small cell lung cancer","authors":"Yunzhen Wang,&nbsp;Ziyi Zhu,&nbsp;Raojun Luo,&nbsp;Wenwen Chen","doi":"10.1002/jgm.3690","DOIUrl":"10.1002/jgm.3690","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Lung cancer stands out as a highly perilous malignant tumor with severe implications for human health. There has been a growing interest in neutrophils as a result of their role in promoting cancer in recent years. Thus, the present study aimed to investigate the heterogeneity of neutrophils in non-small cell lung cancer (NSCLC).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Single-cell RNA sequencing of tumor-associated neutrophils (TANs) and polymorphonuclear neutrophils sourced from the Gene Expression Omnibus database was analyzed. Moreover, cell–cell communication, differentiation trajectories and transcription factor analyses were performed.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Neutrophils were found to be closely associated with macrophages. Four major types of TANs were identified: a transitional subcluster that migrated from blood to tumor microenvironment (TAN-0), an inflammatory subcluster (TAN-1), a subpopulation that displayed a distinctive transcriptional signature (TAN-2) and a final differentiation state that promoted tumor formation (TAN-3). Meanwhile, TAN-3 displayed a marked increase in glycolytic activity. Finally, transcription factors were analyzed to uncover distinct TAN cluster-specific regulons.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The discovery of the dynamic characteristics of TANs in the present study is anticipated to contribute to yielding a better understanding of the tumor microenvironment and advancing the treatment of NSCLC.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk mmu-miR-185 通过靶向 Btk 调节破骨细胞的分化和迁移
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-05-01 DOI: 10.1002/jgm.3687
Dan He, Yueying Jiao, Jian Xu, Junjie Luo, Yaqi Cui, Xiabing Han, Hongshan Zhao
{"title":"mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk","authors":"Dan He,&nbsp;Yueying Jiao,&nbsp;Jian Xu,&nbsp;Junjie Luo,&nbsp;Yaqi Cui,&nbsp;Xiabing Han,&nbsp;Hongshan Zhao","doi":"10.1002/jgm.3687","DOIUrl":"https://doi.org/10.1002/jgm.3687","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that <i>miR-185</i> depletion may promote bone formation by regulating <i>Bgn</i> expression and the BMP/Smad signaling pathway. However, the effects of <i>miR-185-5p</i> on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from <i>mmu-miR-185</i> gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in <i>miR-185-5p</i> and osteoclast marker molecules, including <i>Trap</i>, <i>Dcstamp</i>, <i>Ctsk</i> and <i>Nfatc1</i>, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether <i>Btk</i> is a downstream target gene of <i>miR-185-5p</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p><i>miR-185</i> depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of <i>miR-185-5p</i> in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, <i>Btk</i> was identified as a downstream target gene of <i>miR-185-5p</i>, suggesting that <i>miR-185-5p</i> may inhibit osteoclast differentiation and migration by targeting <i>Btk</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p><i>miR-185</i> regulates osteoclasts differentiation, with overexpression of <i>miR-185-5p</i> inhibiting osteoclast differentiation and migration in vitro. Additionally, <i>miR-185-5p</i> may modulate osteoclastic differentiation and migration by regulating <i>Btk</i> expression.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive profiling of endocrine metabolism identifies a novel signature with robust predictive value in ovarian cancer 内分泌代谢综合分析确定了对卵巢癌具有强大预测价值的新特征
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-04-30 DOI: 10.1002/jgm.3686
Dan Yu, Yan Luo, Rong Guo, Fang Ma, Yunyun Chang, Jianhong Dang
{"title":"Comprehensive profiling of endocrine metabolism identifies a novel signature with robust predictive value in ovarian cancer","authors":"Dan Yu,&nbsp;Yan Luo,&nbsp;Rong Guo,&nbsp;Fang Ma,&nbsp;Yunyun Chang,&nbsp;Jianhong Dang","doi":"10.1002/jgm.3686","DOIUrl":"https://doi.org/10.1002/jgm.3686","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>The cell endocrine pathway is a critical physiological process composed of the endoplasmic reticulum, Golgi apparatus and associated vesicles. Loss of enzymes or proteins can cause dysfunction of endoplasmic reticulum and Golgi apparatus and affect secretion pathways leading to a variety of human diseases, including cancer.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The single-cell RNA sequencing and single nucleotide variant principal component analysis data of ovarian cancer were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Eighty-four genes from SECRETORY_PATHWAYs were obtained from the gene set enrichment analysis (GSEA) website. Univariate cox regression analyses and ConsensusClusterPlus were used to identify prognostic genes and molecular subtypes, which were validated using the tumor immune dysfunction and exclusion (i.e. TIDE) analysis and gene mutation analysis. A prognosis model was established by randomForestSRC. Abundant infiltrated immune cells and pathway enrichment analyses were carried out, respectively, through ssGSEA, ESTIMATE, MCP-counter and GSEA. The drug sensitive analysis was performed using pRRophetic package. Immunotherapy datasets and pan-carcinoma analysis were used to examine the performance of prognostic model.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Eighteen prognostic genes from SECRETORY_PATHWAYs were found in both TCGA and GEO datasets. Next, two clusters (C1 and C2) were determined, for which C1 with a poor prognosis had higher immune infiltration. Tumor-related pathways, such as PATHWAYS_IN_CANCER and B_CELL_RECEPTOR_SIGNALING_PATHWAY, were enriched in C1. Moreover, C2 was suitable for immunotherapy. A four-gene (DNAJA1, NDRG3, LUZP1 and ZCCHC24) signature was developed and successfully validated. RiskScore of higher levels were significantly associated with worse prognoses. An enhanced immune infiltration, increased pathways score and inappropriate immunotherapy were observed in the high RiskScore group. The high- and low-RiskScore groups had different drug sensitivities. Immunotherapy datasets and pan-carcinoma analysis indicated that the low RiskScore group may benefit from immunotherapy.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Based on the perspective of the secretory signaling pathway, a robust prognostic signature with great performances was determined, which may provide clues for clinical precision treatment of ovarian cancer.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MEG3 shuttled by exosomes released from human bone marrow mesenchymal stem cells promotes TP53 stability to regulate MCM5 transcription in keloid fibroblasts 人骨髓间充质干细胞释放的外泌体穿梭的 MEG3 可促进 TP53 的稳定性,从而调节瘢痕疙瘩成纤维细胞中 MCM5 的转录
IF 3.5 4区 医学
Journal of Gene Medicine Pub Date : 2024-04-30 DOI: 10.1002/jgm.3688
Feibin Zhu, Yuanjian Ye, Ying Shao, Chunli Xue
{"title":"MEG3 shuttled by exosomes released from human bone marrow mesenchymal stem cells promotes TP53 stability to regulate MCM5 transcription in keloid fibroblasts","authors":"Feibin Zhu,&nbsp;Yuanjian Ye,&nbsp;Ying Shao,&nbsp;Chunli Xue","doi":"10.1002/jgm.3688","DOIUrl":"https://doi.org/10.1002/jgm.3688","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exos<sup>sh-MEG3</sup>. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exos<sup>sh-MEG3</sup>, leading to reduced KF activity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信