Jing-Jing Lian, Zhao-Xing Li, Hui-ling Lin, Ming-Chuang Sun, Hao Wu, An-Qi Feng, Kang Fang, Xiao-Yuan Wang, Ai-Ping Xu, Yuan Chu, Li Zhang, Tao Chen, Mei-Dong Xu
{"title":"The activation of asparagine synthetase by the transcription factor FOXM1 plays a pivotal role in the initiation and progression of ESCC","authors":"Jing-Jing Lian, Zhao-Xing Li, Hui-ling Lin, Ming-Chuang Sun, Hao Wu, An-Qi Feng, Kang Fang, Xiao-Yuan Wang, Ai-Ping Xu, Yuan Chu, Li Zhang, Tao Chen, Mei-Dong Xu","doi":"10.1002/jgm.3741","DOIUrl":null,"url":null,"abstract":"<p>This study explores the role of the transcription factor FOXM1 in the initiation and progression of oesophageal squamous cell carcinoma (ESCC). Our findings reveal that FOXM1 is highly expressed in ESCC and correlates with the prognosis of the disease. The relationship between FOXM1 and asparagine synthetase (ASNS) is investigated, and the study demonstrates that FOXM1 activates ASNS, impacting the tumour stemness of ESCC. In this study, we reveal the association between FOXM1 and ESCC development, as well as FOXM1’s promotion of migration and proliferation in ESCC cells. The study also highlights FOXM1’s regulation of ASNS transcription and the functional role of ASNS in ESCC metastasis and growth. Furthermore, the study explores the impact of FOXM1 and ASNS on ESCC stemness and their potential implications for chemotherapy resistance.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgm.3741","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3741","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the role of the transcription factor FOXM1 in the initiation and progression of oesophageal squamous cell carcinoma (ESCC). Our findings reveal that FOXM1 is highly expressed in ESCC and correlates with the prognosis of the disease. The relationship between FOXM1 and asparagine synthetase (ASNS) is investigated, and the study demonstrates that FOXM1 activates ASNS, impacting the tumour stemness of ESCC. In this study, we reveal the association between FOXM1 and ESCC development, as well as FOXM1’s promotion of migration and proliferation in ESCC cells. The study also highlights FOXM1’s regulation of ASNS transcription and the functional role of ASNS in ESCC metastasis and growth. Furthermore, the study explores the impact of FOXM1 and ASNS on ESCC stemness and their potential implications for chemotherapy resistance.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.