{"title":"Idiopathic Pulmonary Fibrosis Is Associated With Type 1 Diabetes: A Two-Sample Mendelian Randomization Study","authors":"Leyan Chen, Tianzhichao Hou, Feifan Ge, Huachi Jiang, Feng Liu, Jingyan Tian, Mingfeng Zheng","doi":"10.1002/jgm.70008","DOIUrl":"10.1002/jgm.70008","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear; previous studies revealed the underlying connection between IPF and diabetes, but there is no consensual opinion. This study is aimed at examining the association between Type 1 diabetes (T1D) and IPF using Mendelian randomization (MR).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Method</h3>\u0000 \u0000 <p>In our two-sample MR study, we selected single nucleotide polymorphisms (SNPs) that are strongly associated with T1D in a genome-wide association study (GWAS) from IEU (dataset: ebi-a-GCST005536) and obtained their corresponding effect estimates on T1D risk in an IPF GWAS from IEU (dataset: finn-b-IPF). We conducted a multivariable Mendelian randomization (MVMR) analysis to eliminate the interference of aging.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Result</h3>\u0000 \u0000 <p>In the outcome of inverse-variance weighted (IVW) method, T1D showed a promoting effect on IPF (odds ratio (OR): 1.132, <i>p</i> = 0.005). The statistics passed the MR-PRESSO test, and no outliers were observed (global test <i>p</i> = 0.238). MVMR study was performed, and the aging-adjusted result remains almost the same (OR = 1.132, OR_95% CI: 1.034–1.239, <i>p</i> = 0.007).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our study shows a causal relation between T1D and IPF; further investigation should be conducted.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pericarpium Trichosanthis Inhibits TGF-β1-Smad3 Pathway-Induced Cardiac Fibrosis in Heart Failure Rats via Upregulation of microRNA-29b","authors":"Yue He, Meng-shi Dai, Li-yu Tao, Xinsheng Gu, Hao Wang, Ping Liu","doi":"10.1002/jgm.70003","DOIUrl":"10.1002/jgm.70003","url":null,"abstract":"<div>\u0000 \u0000 <p>Cardiac dysfunction and adverse consequences induced by cardiac fibrosis have been well documented. However, the cardiac fibrosis pathway in chronic heart failure (CHF) remains unclear, and it is therefore necessary to conduct further research for the sake of developing more effective therapeutic strategies for CHF. Some recent studies suggest that Pericarpium Trichosanthis (PT) may help improve the progression of fibrotic diseases. To validate this possibility, we conducted an experiment to evaluate the effect of PT on cardiac fibrosis and explore the hidden mechanism. In the experiment, we induced cardiac fibrosis in rats by left anterior descending (LAD) coronary artery ligation. The findings revealed that PT reduced myocardial fibrosis and increased cardiac activity in CHF rats receiving LAD ligation. In addition, the TGF-β1 level was decreased, and the miR-29b expression was increased in CHF rats after PT treatment. Our in vitro experiment also demonstrated that PT treatment suppressed fibroblast activation and collagen synthesis in cardiac fibroblasts stimulated by TGF-β1, and at the same time decreased the TGF-β1 level and increased the miR-29b expression. We further verified that this action was correlated with the TGF-β/Smad3 signaling pathway. We also observe that miR-29b could suppress the TGF-β1 expression, and the suppression of miR-29b weakened the anti-fibrotic effect of PT. This suggests that PT could cure cardiac fibrosis and dysfunction both in vitro and in vivo via the TGF-β/Smad3 signaling pathway, while miR-29b may participate in this action.</p>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lexiang Li, Jun Zhu, Yi Chen, Haobo Li, Yaguang Han, Lei Zhang, Bo Wang
{"title":"Interaction Between YTH Domain-Containing Family Protein 2 and SET Domain-Containing Lysine Methyltransferase 7 Suppresses Autophagy in Osteoarthritis Chondrocytes, Exacerbating Cartilage Damage","authors":"Lexiang Li, Jun Zhu, Yi Chen, Haobo Li, Yaguang Han, Lei Zhang, Bo Wang","doi":"10.1002/jgm.70005","DOIUrl":"10.1002/jgm.70005","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background and Objective</h3>\u0000 \u0000 <p>Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The expression of SETD7 in cartilage tissues from OA patients and healthy controls was quantified using quantitative reverse transcription PCR and Western blot analysis. Small interfering RNA targeting SETD7 (si-SETD7) was transfected into human articular chondrocytes (HACs) treated with IL-1β to examine its impact on cellular viability, apoptosis, inflammatory responses, and autophagy. Functional assays including Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, and commercial kits were employed to assess biochemical changes. Interaction between YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) and SETD7 was explored using RNA immunoprecipitation and co-immunoprecipitation assays.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>SETD7 was overexpressed in OA cartilage compared with controls and increased further upon IL-1β treatment. Knockdown of SETD7 in IL-1β-treated HACs improved cellular viability, decreased apoptosis, and reversed the adverse effects on lactate dehydrogenase release and inflammatory markers (tumor necrosis factor-alpha and interleukin-6) while enhancing antioxidant enzymes (catalase, malondialdehyde, and superoxide dismutase). Additionally, autophagy was restored, as evidenced by changes in the levels of autophagy related 5, Beclin1, and sequestosome 1. Interfering with autophagy using chloroquine negated the protective effects of SETD7 knockdown. Furthermore, YTHDF2 was found to stabilize SETD7 mRNA, influencing its expression and enhancing IL-1β-induced chondrocyte injury.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>SETD7 plays a critical role in the pathogenesis of OA by modulating chondrocyte survival, apoptosis, inflammation, and autophagy. The interaction between YTHDF2 and SETD7 exacerbates chondrocyte injury under inflammatory conditions, highlighting potential therapeutic targets for OA treatment. The YTHDF2/SETD7 axis offers a novel insight into the molecular mechanisms governing cartilage degeneration in OA.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Wu, Xinshuang Wang, Jing Yu, Jiao Li, Zhenhua Ma, Xi Sheng, Han Yang, Liping Wei, Xin Qi
{"title":"Silencing N29 Regulated miR-193b-5p/TGFBR2 Axis to Mitigate the Progression of Cardiac Hypertrophy","authors":"Hao Wu, Xinshuang Wang, Jing Yu, Jiao Li, Zhenhua Ma, Xi Sheng, Han Yang, Liping Wei, Xin Qi","doi":"10.1002/jgm.70002","DOIUrl":"10.1002/jgm.70002","url":null,"abstract":"<div>\u0000 \u0000 <p>The study aimed to analyze differentially expressed lncRNAs in a model of cardiac hypertrophy, specially focusing on the molecular mechanisms of lncRNA NONMMUT023529 (lncRNA N29) in myocardial hypertrophy. Based on gene microarray results, RT-<i>q</i>PCR validation confirmed that lncRNA N29 was significantly upregulated in TAC-induced mice cardiac tissues. Echocardiographic assessments further verified that silencing lncRNA N29 led to a marked improvement in cardiac function, which aligned with the pathological findings revealed by H&E and Masson staining. Meanwhile, immunofluorescence staining results also confirmed that silencing lncRNA N29 effectively inhibited myocardial hypertrophy. Dual luciferase reporter assay and western blot results confirmed that lncRNA can mediate miR-193b-5p/TGFBR2 axis to regulate smad/2/3 expression and mitigate the progression of myocardial hypertrophy. Our findings suggested that the close association between the protective mechanism involving in the silencing lncRNA N29 in myocardial hypertrophy and miR-193b-5p/TGFBR2 axis. We identified that lncRNA N29 might act as a therapeutic target for the treatment of myocardial hypertrophy.</p>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengfei Hu, Ruohan Dou, Zihao Qi, Guanya Liu, Yuantao Su
{"title":"YAP1 Overexpression Enhances the Aerobic Glycolysis Process via Suppression of EGLN2 in Pancreatic Ductal Adenocarcinoma","authors":"Pengfei Hu, Ruohan Dou, Zihao Qi, Guanya Liu, Yuantao Su","doi":"10.1002/jgm.70006","DOIUrl":"10.1002/jgm.70006","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases and has remarkably high mortality rates. In recent years, altered metabolism has been shown to contribute to the maintenance of pancreatic cancer malignancies. However, the molecular mechanism underlying glucose metabolism reprogramming remains elusive. The aim of this study was to elucidate the role of Yes-associated protein (YAP1), an important effector of the Hippo pathway, in the regulation of aerobic glycolysis in pancreatic cancer. Moreover, the contributions of YAP1 and its associated glycolytic enzymes to prognosis were assessed via The Cancer Genome Atlas (TCGA) dataset.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>YAP1 expression was silenced by short hairpin RNA (shRNA), and its effects on glycolytic activity and mitochondrial respiration were analysed via Agilent Seahorse XF Analysers. The effects of YAP1 on hypoxia-inducible factor-1α (HIF-1α) and its transcriptional activity on glycolytic genes were examined via shRNA-mediated silencing of YAP1. The underlying mechanism by which YAP1 controls the HIF-1α protein level was analysed by exploring the interaction between YAP1 and egg-laying-defective nine family (EGLN) members, which are well-established regulators of the HIF-1α protein level. Finally, the effects of YAP1, EGLN and glycolytic genes on prognosis were analysed via TCGA dataset.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that silencing YAP1 expression inhibited anabolic glycolysis in pancreatic cancer cells. YAP1 was demonstrated to regulate the HIF-1α protein level, transcriptional activity and the expression of HIF-1α-targeted glycolytic genes. In-depth analysis demonstrated that EGLN2, a modulator of the HIF-1α protein level, was a direct target of YAP1. Low EGLN2 expression was associated with a poor prognosis. By analysing TCGA dataset and performing immunohistochemical staining, we demonstrated that YAP1 expression was negatively correlated with EGLN2 expression at the mRNA level and protein levels.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The present study demonstrated that YAP1 positively regulates aerobic glycolysis by inhibiting EGLN2 expression, which results in an increased HIF-1α protein level and transcriptional activity. YAP1 was positively regulated and significantly correlated with HIF-1α-targeted glycolytic genes, including glucose transporter type 1(GLUT1), hexokinase2 (HK2) and lactate dehydrogenase A (LDHA). Elevated YAP1 expression and concomitant downregulation of ","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142796618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuze He, Yunbo Yuan, Linzi Ji, Yuting Shu, Zhihao Wang, Shuxin Zhang, Wanchun Yang, Mina Chen, Yanhui Liu
{"title":"Integrative Analysis Identifies NSUN2 as an Essential Coordinator for Glioma Malignancy and Glucose Metabolism","authors":"Yuze He, Yunbo Yuan, Linzi Ji, Yuting Shu, Zhihao Wang, Shuxin Zhang, Wanchun Yang, Mina Chen, Yanhui Liu","doi":"10.1002/jgm.70004","DOIUrl":"https://doi.org/10.1002/jgm.70004","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Glioma, particularly glioblastoma, is the most common and aggressive primary brain tumor, with poor prognosis due to its metabolic heterogeneity. NSUN2, an m5C RNA methyltransferase and direct glucose sensor, has been implicated in various malignancies, but its role in glioma remains unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Bioinformatic analysis was performed on multiple public databases and our glioma dataset from West China Hospital (WCH). In vitro experiments were conducted to assess the effects of NSUN2 knockdown on glioma cell proliferation, migration, and chemotherapeutic sensitivity. Transcriptomic analysis was employed to obtain mechanistic insights.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>NSUN2 expression was significantly upregulated in gliomas and correlated with higher tumor grade and poor prognosis. NSUN2 knockdown reduced glioma cell proliferation, migration, and increased sensitivity to temozolomide. Transcriptomic analysis revealed that NSUN2 knockdown downregulated key genes involved in glioma progression. Mechanistically, NSUN2 positively regulates the activity of mTORC1 signaling, as indicated by phosphorylated S6 ribosomal protein and 4EBP1. Moreover, NSUN2 overexpression reciprocally increased tumor volume compared with controls, indicating NSUN2 promoting glioma cell proliferation in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our findings highlight NSUN2 as a critical regulator of glioma malignancy. Targeting NSUN2 disrupts key pathways in glioma progression, suggesting it as a promising therapeutic target. Our work underscores the potential of NSUN2 inhibition to enhance treatment efficacy and improve patient outcomes in glioma.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Augmentation of Solid Tumor Immunotherapy With IL-12","authors":"Christian Geils, Katie L. Kathrein","doi":"10.1002/jgm.70000","DOIUrl":"https://doi.org/10.1002/jgm.70000","url":null,"abstract":"<p><i>Immunotherapy</i> describes a class of therapies in which the immune system is manipulated for therapeutic benefit. These treatments include immune checkpoint inhibitors, adoptive cell therapy, and vaccines. For many hematological malignancies, immunotherapy has emerged as an essential treatment component. However, this success has yet to be replicated for solid tumors, which develop advanced physical and molecular mechanisms for suppressing and evading immune destruction. Nevertheless, cytokine immunotherapy presents a potential remedy to these barriers by delivering a proinflammatory immune signal to the tumor and thereby transforming it from immunologically “cold” to “hot.” Interleukin-12 (IL-12), one of the most potent proinflammatory cytokines, was initially investigated for this purpose. However, initial murine and human studies in which IL-12 was administered systemically resulted in dangerous immunotoxicity associated with off-target immune activation. As a result, recent studies have employed advanced cell and molecular engineering approaches to reduce IL-12 toxicity while increasing or maintaining its efficacy such that its effective doses can be tolerated in humans. This review highlights such developments and identifies promising future directions.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgm.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WES and Transcriptome Analysis Identifies FN1 as a Candidate Gene for Anterior Segment Dysgenesis","authors":"Qinghong Lin, Xuejun Wang, Xiaosong Han, Xiaoliao Peng, Xiaoyu Zhang, Yuwen Ran, Ling Sun, Yan Wang, Tian Han, Xingtao Zhou","doi":"10.1002/jgm.70001","DOIUrl":"10.1002/jgm.70001","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Anterior segment dysgenesis (ASD) disorders are phenotypically diverse and have multiple associated genes. This study reports on a Chinese family of three generations with ASD disorders and identifies several associated genes and pathways of the disorders.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The history of illnesses, clinical observations, and blood samples of all family members were collected. Whole exome sequencing (WES) and polymerase chain reaction (PCR) were conducted to detect the genetic variants between patients and control members in the family. Transcriptomic study and quantitative real-time PCR (qRT-PCR) were subsequently performed to validate the differentially expressed genes (DEGs) and investigate the possible mechanisms of ASD caused by the variations.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The medical examination and illness history identified four members of the family diagnosed with ASD (III:3, II:3, II:2 and I:2). All four patients suffered various degrees of corneal opacity with abnormally thin cornea. Members II:3, II:2, and I:2 also had cataracts and iris hypoplasia and received an intraocular lens implant before the age of 20. We detected a heterozygous missense variation c.6122G > A (p.R2041Q and rs746145647) in fibronectin1 (<i>FN1</i>) in the four patients in this family that was absent in the other healthy members. The transcriptome and RT-PCR analysis revealed that the <i>FN1</i> mRNA level was significantly upregulated in the blood samples of patients compared to healthy controls. A total of 909 DEGs were identified, including 607 upregulated genes and 302 downregulated genes. GO and KEGG annotation revealed that many DEGs were involved in biological processes closely related to focal adhesion, extracellular matrix-receptor interaction, TGF-β pathway, and the immune system.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>This study identified an FN1 mutation associated with ASD patients and probed potential pathways related to it.</p>\u0000 </section>\u0000 </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142734786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrative analyses of genetic mechanisms responsible for bone–fat imbalance in osteoporosis","authors":"Zheng Zhang, Zhengbo Tao, Yuhe Zhang, Zhanrong Zhang, Weijin Zhang, Xuanrui Zhang, Jinzhu Zhao, Chunsheng Tao, Xuhui Zhou","doi":"10.1002/jgm.3739","DOIUrl":"10.1002/jgm.3739","url":null,"abstract":"<p>Osteoporosis manifests through adipocyte accrual and osteoblast diminution within bone marrow. However, the precise mechanisms driving the shift from osteogenesis to adipogenesis in bone marrow mesenchymal stem cells (BMSCs) remain largely undefined. In this study, we harnessed the power of bioinformatic tools to analyze gene expression patterns of BMSCs during adipogenic differentiation and osteoporosis using the data from Gene Expression Omnibus (GEO) repositories (GSE113253 and GSE35956), complemented by in vitro and in vivo experiments to validate the findings. Five distinct expression profiles of differentially expressed genes across the adipogenic timeline were identified. The initial phase is marked by ribosome biogenesis and rRNA processing, which is followed by the metabolism of organic acids and processing of inorganic ions. In contrast, the terminal phase is characterized by lipid transport, accumulation, and metabolism, alongside inorganic cation metabolism, thereby underscoring unique transcriptional signatures during the early and late stages of adipogenic differentiation. In BMSCs derived from osteoporotic samples, there is a notable decline in cellular proliferation and a diminished osteogenic capacity. Critically, the genes common to both adipogenesis and osteoporosis in BMSCs are predominantly involved in the negative regulation of Wnt signaling and cellular proliferation. Key genes including SOCS1, MYC, CEBPB, FYN, AXIN2, and RXRA are identified and show downregulation in BMSCs from aged mice. Subsequent in vitro experiments have validated the regulatory influence of RXRA on both adipogenic and osteogenic differentiations of BMSCs, highlighting its crucial role as a central modulator in bone formation and the pathophysiology of osteoporosis.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ANGPTL4—A protein involved in glucose metabolism, lipid metabolism, and tumor development","authors":"Zhilong Xu, Gening Jiang","doi":"10.1002/jgm.3740","DOIUrl":"10.1002/jgm.3740","url":null,"abstract":"<p>Since ANGPTL4 was discovered to be involved in lipid metabolism in 2000 for the first time, Angptl4 has attracted the attention of researchers. With the further research, it was found that angptl4 was also involved in many biological activities (glucose metabolism, angiogenesis, wound healing, tumor growth, etc.) in vivo. In this review, we provide an overview of the fundamental role of ANGPTL4 in metabolic regulation and its impact on tumor growth. These insights may provide a way for exploring ANGPTL4 as a potential therapeutic target for future disease treatments.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}