The Mechanisms, Research Status, and Future Prospects of m6A Modification in Breast Cancer

IF 3.2 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiu Xue-mei, Chen Yang, Ju Wen-ting, Qin Wen-xing
{"title":"The Mechanisms, Research Status, and Future Prospects of m6A Modification in Breast Cancer","authors":"Xiu Xue-mei,&nbsp;Chen Yang,&nbsp;Ju Wen-ting,&nbsp;Qin Wen-xing","doi":"10.1002/jgm.70014","DOIUrl":null,"url":null,"abstract":"<p>N6-methyladenosine (m6A) modification is a significant methylation alteration frequently observed in eukaryotic RNAs, garnering considerable attention in the field of breast cancer research in recent years. The m6A modification profoundly influences the onset, progression, and prognosis of breast cancer by regulating RNA stability, translation efficiency, and degradation processes. Numerous studies have demonstrated that m6A regulatory factors, including METTL3, METTL14, and ALKBH5, play pivotal roles in breast cancer cells, affecting cell proliferation, metastasis, and drug resistance. Furthermore, the interactions between m6A modification and non-coding RNAs, as well as its role in the tumor microenvironment, have increasingly attracted researchers' interest. Although numerous studies have elucidated the dual roles of m6A in breast cancer, its specific molecular mechanisms remain to be thoroughly investigated. Future research should explore various aspects, including the role of m6A in different subtypes of breast cancer, its involvement in chemotherapy resistance, and its interactions with the tumor microenvironment. This exploration will contribute to advancements in the diagnosis and treatment of breast cancer. The present article aims to systematically summarize the research progress on m6A modification in breast cancer, offering novel insights and strategies for future related research and clinical applications.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgm.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.70014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenosine (m6A) modification is a significant methylation alteration frequently observed in eukaryotic RNAs, garnering considerable attention in the field of breast cancer research in recent years. The m6A modification profoundly influences the onset, progression, and prognosis of breast cancer by regulating RNA stability, translation efficiency, and degradation processes. Numerous studies have demonstrated that m6A regulatory factors, including METTL3, METTL14, and ALKBH5, play pivotal roles in breast cancer cells, affecting cell proliferation, metastasis, and drug resistance. Furthermore, the interactions between m6A modification and non-coding RNAs, as well as its role in the tumor microenvironment, have increasingly attracted researchers' interest. Although numerous studies have elucidated the dual roles of m6A in breast cancer, its specific molecular mechanisms remain to be thoroughly investigated. Future research should explore various aspects, including the role of m6A in different subtypes of breast cancer, its involvement in chemotherapy resistance, and its interactions with the tumor microenvironment. This exploration will contribute to advancements in the diagnosis and treatment of breast cancer. The present article aims to systematically summarize the research progress on m6A modification in breast cancer, offering novel insights and strategies for future related research and clinical applications.

Abstract Image

乳腺癌中m6A修饰的机制、研究现状及展望
n6 -甲基腺苷(m6A)修饰是真核rna中常见的一种重要的甲基化改变,近年来在乳腺癌研究领域受到了广泛关注。m6A修饰通过调节RNA稳定性、翻译效率和降解过程,深刻影响乳腺癌的发生、进展和预后。大量研究表明,m6A调节因子METTL3、METTL14、ALKBH5等在乳腺癌细胞中起关键作用,影响细胞增殖、转移和耐药。此外,m6A修饰与非编码rna的相互作用及其在肿瘤微环境中的作用越来越引起研究者的兴趣。虽然许多研究已经阐明了m6A在乳腺癌中的双重作用,但其具体的分子机制仍有待深入研究。未来的研究应从多方面探索,包括m6A在不同亚型乳腺癌中的作用、与化疗耐药的关系、与肿瘤微环境的相互作用等。这一探索将有助于提高乳腺癌的诊断和治疗水平。本文旨在系统总结m6A修饰在乳腺癌中的研究进展,为今后相关研究和临床应用提供新的思路和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Gene Medicine
Journal of Gene Medicine 医学-生物工程与应用微生物
CiteScore
6.40
自引率
0.00%
发文量
80
审稿时长
6-12 weeks
期刊介绍: The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies. Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials. Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信