{"title":"基于同源重组缺陷相关特征的免疫景观表征和ERCC6L敲低促进乳腺癌放射敏感性的鉴定","authors":"Jiahao Li, Chen Gong, Haiting Zhou, Junxia Liu, Wentao Ha, Yizhi Jiang, Huihua Xiong","doi":"10.1002/jgm.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Homologous recombination deficiency (HRD) exhibits significant associations with the occurrence, progression, and prognosis of breast cancer. However, the primary breast cancer HRD positivity rate is merely 24%. The identification of markers associated with HRD is crucial for the development of novel therapeutic approaches for breast cancer. The role of the oncogene <i>ERCC6L</i> in breast cancer remains unclear, and its interaction with radiotherapy has yet to be explored, necessitating further investigation for clarification.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We employed WGCNA to identify genes associated with the HRD score, utilizing public HRD score and genetic data from TCGA breast cancer, with their clinical characteristics. Subsequently, we employed various machine learning methods to filter relevant genes. The final four genes were obtained through random forest and stepCox, and their performance was validated in TCGA, GSE96058, and METABRIC datasets. Next, we assessed the tumor immune microenvironment using methods such as ssGSEA, GSVA, CIBERSORT, ESTIMATE, and single-cell analysis. Finally, we validated the downregulation of <i>ERCC6L</i>, increasing DNA damage and enhancing radiation sensitivity, through immune fluorescence, flow cytometry, plate cloning, and western blot.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A prognostic model named HRAS was established through machine learning, consisting of four genes (<i>ERCC6L</i>, <i>UBE2T</i>, <i>TPX2</i>, and <i>SLC7A5</i>). The indicator exhibited excellent predictive performance on the prognosis and the efficacy of immunotherapy and radiotherapy of breast cancer patients in independent datasets. Breast cancer patients with high HRAS scores showed higher TMB and stemness, increased expression of immune checkpoints, reduced immune cell infiltration, and poorer prognosis in the context of immunotherapy and radiotherapy. Experimental validation demonstrated that knockdown of ERCC6L markedly elevated DNA damage, enhanced apoptosis, and induced cell cycle arrest in response to radiation therapy, thereby sensitizing cells to radiation.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The HRD-related signatures displayed strong predictive capabilities for the prognosis in multiple datasets and the efficacy of immunotherapy and radiotherapy of breast cancer patients. Moreover, the composite indicator reflected the immune microenvironment characteristics and could be novel markers for predicting the prognosis and clinical treatment outcomes in breast cancer patients. Our experiments first elucidated the role of <i>ERCC6L</i> in enhancing radiation-induced DNA damage, presenting a novel target for strategies aimed at sensitizing cancer cells to radiotherapy.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Immune Landscape Based on Homologous Recombination Deficiency Associated Signatures and Identification of Knockdown of ERCC6L to Promote Radiosensitivity in Breast Cancer\",\"authors\":\"Jiahao Li, Chen Gong, Haiting Zhou, Junxia Liu, Wentao Ha, Yizhi Jiang, Huihua Xiong\",\"doi\":\"10.1002/jgm.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Homologous recombination deficiency (HRD) exhibits significant associations with the occurrence, progression, and prognosis of breast cancer. However, the primary breast cancer HRD positivity rate is merely 24%. The identification of markers associated with HRD is crucial for the development of novel therapeutic approaches for breast cancer. The role of the oncogene <i>ERCC6L</i> in breast cancer remains unclear, and its interaction with radiotherapy has yet to be explored, necessitating further investigation for clarification.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We employed WGCNA to identify genes associated with the HRD score, utilizing public HRD score and genetic data from TCGA breast cancer, with their clinical characteristics. Subsequently, we employed various machine learning methods to filter relevant genes. The final four genes were obtained through random forest and stepCox, and their performance was validated in TCGA, GSE96058, and METABRIC datasets. Next, we assessed the tumor immune microenvironment using methods such as ssGSEA, GSVA, CIBERSORT, ESTIMATE, and single-cell analysis. Finally, we validated the downregulation of <i>ERCC6L</i>, increasing DNA damage and enhancing radiation sensitivity, through immune fluorescence, flow cytometry, plate cloning, and western blot.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>A prognostic model named HRAS was established through machine learning, consisting of four genes (<i>ERCC6L</i>, <i>UBE2T</i>, <i>TPX2</i>, and <i>SLC7A5</i>). The indicator exhibited excellent predictive performance on the prognosis and the efficacy of immunotherapy and radiotherapy of breast cancer patients in independent datasets. Breast cancer patients with high HRAS scores showed higher TMB and stemness, increased expression of immune checkpoints, reduced immune cell infiltration, and poorer prognosis in the context of immunotherapy and radiotherapy. Experimental validation demonstrated that knockdown of ERCC6L markedly elevated DNA damage, enhanced apoptosis, and induced cell cycle arrest in response to radiation therapy, thereby sensitizing cells to radiation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The HRD-related signatures displayed strong predictive capabilities for the prognosis in multiple datasets and the efficacy of immunotherapy and radiotherapy of breast cancer patients. Moreover, the composite indicator reflected the immune microenvironment characteristics and could be novel markers for predicting the prognosis and clinical treatment outcomes in breast cancer patients. Our experiments first elucidated the role of <i>ERCC6L</i> in enhancing radiation-induced DNA damage, presenting a novel target for strategies aimed at sensitizing cancer cells to radiotherapy.</p>\\n </section>\\n </div>\",\"PeriodicalId\":56122,\"journal\":{\"name\":\"Journal of Gene Medicine\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Gene Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgm.70012\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.70012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Characterization of Immune Landscape Based on Homologous Recombination Deficiency Associated Signatures and Identification of Knockdown of ERCC6L to Promote Radiosensitivity in Breast Cancer
Background
Homologous recombination deficiency (HRD) exhibits significant associations with the occurrence, progression, and prognosis of breast cancer. However, the primary breast cancer HRD positivity rate is merely 24%. The identification of markers associated with HRD is crucial for the development of novel therapeutic approaches for breast cancer. The role of the oncogene ERCC6L in breast cancer remains unclear, and its interaction with radiotherapy has yet to be explored, necessitating further investigation for clarification.
Methods
We employed WGCNA to identify genes associated with the HRD score, utilizing public HRD score and genetic data from TCGA breast cancer, with their clinical characteristics. Subsequently, we employed various machine learning methods to filter relevant genes. The final four genes were obtained through random forest and stepCox, and their performance was validated in TCGA, GSE96058, and METABRIC datasets. Next, we assessed the tumor immune microenvironment using methods such as ssGSEA, GSVA, CIBERSORT, ESTIMATE, and single-cell analysis. Finally, we validated the downregulation of ERCC6L, increasing DNA damage and enhancing radiation sensitivity, through immune fluorescence, flow cytometry, plate cloning, and western blot.
Results
A prognostic model named HRAS was established through machine learning, consisting of four genes (ERCC6L, UBE2T, TPX2, and SLC7A5). The indicator exhibited excellent predictive performance on the prognosis and the efficacy of immunotherapy and radiotherapy of breast cancer patients in independent datasets. Breast cancer patients with high HRAS scores showed higher TMB and stemness, increased expression of immune checkpoints, reduced immune cell infiltration, and poorer prognosis in the context of immunotherapy and radiotherapy. Experimental validation demonstrated that knockdown of ERCC6L markedly elevated DNA damage, enhanced apoptosis, and induced cell cycle arrest in response to radiation therapy, thereby sensitizing cells to radiation.
Conclusion
The HRD-related signatures displayed strong predictive capabilities for the prognosis in multiple datasets and the efficacy of immunotherapy and radiotherapy of breast cancer patients. Moreover, the composite indicator reflected the immune microenvironment characteristics and could be novel markers for predicting the prognosis and clinical treatment outcomes in breast cancer patients. Our experiments first elucidated the role of ERCC6L in enhancing radiation-induced DNA damage, presenting a novel target for strategies aimed at sensitizing cancer cells to radiotherapy.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.