Perspectives in Plant Ecology Evolution and Systematics最新文献

筛选
英文 中文
High diversity of aquatic Sparganium (Xanthosparganium, Typhaceae) in North Eurasia is mostly explained by recurrent hybridization 欧亚大陆北部水生三棱(Xanthosparganium,Typhaceae)的高度多样性主要是由反复杂交解释的
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-09-01 DOI: 10.1016/j.ppees.2023.125746
Alexander A. Bobrov , Polina A. Volkova , Olga A. Mochalova , Elena V. Chemeris
{"title":"High diversity of aquatic Sparganium (Xanthosparganium, Typhaceae) in North Eurasia is mostly explained by recurrent hybridization","authors":"Alexander A. Bobrov ,&nbsp;Polina A. Volkova ,&nbsp;Olga A. Mochalova ,&nbsp;Elena V. Chemeris","doi":"10.1016/j.ppees.2023.125746","DOIUrl":"10.1016/j.ppees.2023.125746","url":null,"abstract":"<div><p>The species composition and extent of hybridization in <em>Sparganium</em> subgenus <em>Xanthosparganium</em><span> in North Eurasia reported in different published sources significantly vary. Thus, we aimed to clarify the taxonomy and distribution of aquatic </span><em>Sparganium</em><span> in that area. We supplemented the existing fragmentary genetic and morphological data mainly from North America and South Asia with our data from East Europe and North Asia. We combined molecular barcoding of the nuclear phyC<span> and plastid psbJ-petA DNA regions (382 samples) with morphological analysis of herbarium collections (more than 1500 specimens from 16 herbaria) and numerous natural populations with a special focus on hardly accessible Siberian and the Far Eastern regions of Russia. We found that aquatic </span></span><em>Sparganium</em> is represented in North Eurasia by nine species and 14 hybrids. Nine previously unknown hybrids are formally described as new nothotaxa. All species and hybrids could be reliably discriminated with barcoding. We refined the distribution of all taxa in North Eurasia, e.g., <em>S</em>. <em>angustifolium</em>, a species avoiding continental areas, where it was confused by many authors with mostly vegetative specimens of other taxa. In the <em>S</em>. <em>emersum</em> complex in addition to recognized earlier widespread <em>S</em>. <em>emersum</em> and eastern North American <em>S</em>. <em>chlorocarpum</em> we proved the existence of one more distinct lineage – Asian Pacific <em>S</em>. <em>rothertii</em>. We discovered different evolutionary lineages within some species (e.g., <em>S</em>. <em>glomeratum</em> and <em>S. hyperboreum</em><span>) causing additional issues in the taxa identification. Almost all species cross with each other, usually acting both as plastid and pollen donors. Most of the hybrids are widespread and abundant. They originate each time when the ranges of parental species overlap and suitable habitats are available, and rather do not disperse from the centres of origin. Hybridization can be a threat to species with narrow ecological tolerance. Active gene flow is also evident within species when different evolutionary lineages come in contact (e.g., </span><em>S</em>. <em>emersum</em>, <em>S. rothertii</em>, <em>S</em>. <em>glomeratum</em>, <em>S. hyperboreum</em>, <em>S. natans</em>). We provide a new taxonomic treatment, which solves many long-standing issues in subgenus <em>Xanthosparganium</em>, and a new identification key for both species and hybrids occurring in North Eurasia.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45285971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sand termite herbivory causes Namibia´ s fairy circles – A response to Getzin et al. (2022) 沙白蚁草食性导致纳米比亚´ s童话圈——对Getzin等人的回应(2022)
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-09-01 DOI: 10.1016/j.ppees.2023.125745
Norbert Jürgens , Alexander Gröngröft
{"title":"Sand termite herbivory causes Namibia´ s fairy circles – A response to Getzin et al. (2022)","authors":"Norbert Jürgens ,&nbsp;Alexander Gröngröft","doi":"10.1016/j.ppees.2023.125745","DOIUrl":"https://doi.org/10.1016/j.ppees.2023.125745","url":null,"abstract":"<div><p>In parts of Angola, Namibia and South Africa the sparse vegetation at the margin of the Namib Desert is often dotted with roughly circular bare patches. The origin of these “fairy circles” (FC) is subject of an ongoing debate. In a recent article in PPEES, Getzin et al. (2022) provided assessments of grasses and termites combined with soil moisture measurements, in and near to fairy circles in several areas in Namibia. In their interpretation they state that termite herbivory is not causing this grass death as the plants had undamaged roots. Instead they propose that the matrix grasses severely depleted the water in FCs. Here, we use a comprehensive, detailed body of measurements and assessments collated during the last 14 years to propose an alternative interpretation. We structure our interpretation with four statements, each of them based on shown evidence: (1) Long-term soil moisture measurements confirm that the soil beneath the dry topsoil of the bare patch of fairy circles contains an equal or, especially during the biologically active season, higher amount of moisture than the surrounding matrix, at any given time. The grasses of the fairy circles bare patch die during the moist phase of the first weeks after a rain, before even the soil beneath the matrix vegetation gets depleted by transpiration. (2) Within the sandy soils of fairy circle landscapes, there is no sufficiently strong “uptake –diffusion feedback” that could cause a horizontal movement of soil moisture over several meters within a few days. (3) The grasses of the fairy circles bare patch first die at the centre of the bare patch and later towards the margin. (4) The grass in the bare patch of fairy circles dies because of damage to roots due to herbivory by sand termites.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50189029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interplay between tree genetic variation, plant community composition and environment in forest communities dominated by black alder (Alnus glutinosa (L.) Gaertn.) 黑赤杨(Alnus glutinosa(L.)Gaertn.)森林群落树木遗传变异、植物群落组成与环境的交互作用
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-09-01 DOI: 10.1016/j.ppees.2023.125748
Matúš Hrivnák , Diana Krajmerová , Richard Hrivnák , Michal Slezák , Judita Kochjarová , Ivan Jarolímek , Dušan Gömöry
{"title":"Interplay between tree genetic variation, plant community composition and environment in forest communities dominated by black alder (Alnus glutinosa (L.) Gaertn.)","authors":"Matúš Hrivnák ,&nbsp;Diana Krajmerová ,&nbsp;Richard Hrivnák ,&nbsp;Michal Slezák ,&nbsp;Judita Kochjarová ,&nbsp;Ivan Jarolímek ,&nbsp;Dušan Gömöry","doi":"10.1016/j.ppees.2023.125748","DOIUrl":"https://doi.org/10.1016/j.ppees.2023.125748","url":null,"abstract":"<div><p><span>Studies in community genetics have often revealed a relationship between genetic diversity<span> of the focal species and species diversity of the associated biotic communities. This relationship was studied in forest communities dominated by black alder (</span></span><span><em>Alnus glutinosa</em></span><span><span><span> Gaertn.), one of the few tree species tolerating an anoxic environment of waterlogged soils<span>. It is a dominant species of tree overstory in two types of communities: alder carrs, forest </span></span>swamps<span> with stagnating water, and riparian forests occurring along smaller waterflows, periodically flooded with a considerable water level fluctuation during the vegetation period. Plant community composition and genetic variation of alder populations were studied in 218 black alder communities of both types distributed along a broad latitudinal transect from the Pannonian </span></span>lowland<span><span> to the Western Carpathians (Hungary, Slovakia, Poland). Species diversity was significantly higher in riparian stands than in alder carrs, while no difference was observed in the genetic diversity. The analysis of population structure revealed differentiation between Pannonian and Carpathian populations, which may be attributed to different migration pathways during the Holocene. No correlation was observed between genetic diversity of alder and species diversity of the associated </span>vascular plant communities. On the other hand, using the ddRAD-sequencing approach applied to 96 trees, we identified 19 single-nucleotide polymorphisms significantly associated with climatic and soil variables. However, the hypothesized bioindication function of the plant community composition on the genetic variation of black alder as a focal species was not confirmed.</span></span></p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50189095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calyceraceae: Unexpected diversification pattern in the Southern Andes Calycraceae:安第斯山脉南部出乎意料的多样化模式
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-09-01 DOI: 10.1016/j.ppees.2023.125744
N.F. Brignone , N. Mazet , R. Pozner , S.S. Denham
{"title":"Calyceraceae: Unexpected diversification pattern in the Southern Andes","authors":"N.F. Brignone ,&nbsp;N. Mazet ,&nbsp;R. Pozner ,&nbsp;S.S. Denham","doi":"10.1016/j.ppees.2023.125744","DOIUrl":"https://doi.org/10.1016/j.ppees.2023.125744","url":null,"abstract":"<div><p>Calyceraceae comprises 46 species mostly endemic to the Andes<span><span><span> and Patagonia in Southern South America, and it is the sister family of Asteraceae, one of the largest </span>Angiosperm families. With a robust phylogeny and with an exceptionally good sampling fraction, we performed macroevolution and biogeographic analyses to understand paleodiversity dynamics through time and space, and its potential drivers. We address the impact of the Andean uplift, global temperature, life forms, and </span>biogeography<span> on Calyceraceae diversification through a time-calibrated phylogeny. Calyceraceae diversification was homogeneous through time and followed a low speciation rate for the last 24 Mya, with no lineage differing much in their diversification dynamics. In accordance with the homogeneous speciation rate, we found that neither the Andean uplift, nor the evolution of global average temperature, nor the different life forms have affected its diversification. The Southern Andes is the centre of origin of the family and major clades within it, and most dispersal events occurred from the Andes to Patagonia. Most Calyceraceae species seem to have originated, evolved, and dispersed within the Argentinean Arid Diagonal, indicating that niche conservatism could have played an important role in the evolution of Calyceraceae. Differences in macroevolution dynamics could explain the asymmetry of species richness in the two sister families Asteraceae-Calyceraceae.</span></span></p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50189036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevational range limits in naturalized Rumex conglomeratus likely formed by climate and lack of local adaptation 归化黄鳝的海拔范围限制可能是由气候和缺乏局部适应造成的
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-08-19 DOI: 10.1016/j.ppees.2023.125749
Jennifer L. Bufford , Philip E. Hulme
{"title":"Elevational range limits in naturalized Rumex conglomeratus likely formed by climate and lack of local adaptation","authors":"Jennifer L. Bufford ,&nbsp;Philip E. Hulme","doi":"10.1016/j.ppees.2023.125749","DOIUrl":"10.1016/j.ppees.2023.125749","url":null,"abstract":"<div><p>One of the fundamental questions in ecology is why species occur in some areas and not in others. Range limits, the boundaries between a species’ presence and absence, reflect the interplay of dispersal and population dynamics driven by biotic and abiotic conditions. As a result, range limits may shift as dispersal barriers are removed, climates change, and local species composition is altered, but the relative importance of these mechanisms is still not well understood. This is particularly true for introduced species, where current range limits may or may not reflect range limits at equilibrium, and is becoming more pressing under the effects of global climate change. To understand the drivers and stability of range limits in introduced <span><em>Rumex</em><em> conglomeratus</em></span><span>, we used common garden experiments growing plants within, at the edge of and beyond their current range edge. Seeds were sourced from both lowland<span> and upland populations and planted at all three sites. By measuring survival, growth, and the occurrence of reproduction, we tested whether upland populations are locally adapted to high elevation sites and whether plants were capable of surviving and reproducing above the current range edge. However, we found that upland populations were not better adapted to higher elevations, and often were small and performed more poorly than lowland populations across sites. Upland populations appear to be maintained by human-aided seed dispersal from lowland populations, which may constrain the opportunity for local adaptation. Although some plants survived above the current range edge, frost and growing season length restricted plant size and reproduction was infrequent. Therefore, the current range limit seems unlikely to expand as long as regular frost continues at the range edge and dispersal from the lowland continues to prevent local adaptation to upland environments.</span></span></p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46361580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sand Termite Herbivory Causes Namibia´s Fairy Circles – A Response to 沙白蚁的食草性导致纳米比亚的仙女圈-对
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-06-01 DOI: 10.1016/j.ppees.2023.125745
N. Jürgens, A. Gröngröft
{"title":"Sand Termite Herbivory Causes Namibia´s Fairy Circles – A Response to","authors":"N. Jürgens, A. Gröngröft","doi":"10.1016/j.ppees.2023.125745","DOIUrl":"https://doi.org/10.1016/j.ppees.2023.125745","url":null,"abstract":"","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43124012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evolutionary footprints of cold adaptation in arctic-alpine Cochlearia (Brassicaceae) – Evidence from freezing experiments and electrolyte leakage 北极-高山耳蜗(芸苔科)冷适应的进化足迹——来自冷冻实验和电解质泄漏的证据
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-06-01 DOI: 10.1016/j.ppees.2023.125728
Karolin Eisenschmid , Sarina Jabbusch , Marcus A. Koch
{"title":"Evolutionary footprints of cold adaptation in arctic-alpine Cochlearia (Brassicaceae) – Evidence from freezing experiments and electrolyte leakage","authors":"Karolin Eisenschmid ,&nbsp;Sarina Jabbusch ,&nbsp;Marcus A. Koch","doi":"10.1016/j.ppees.2023.125728","DOIUrl":"10.1016/j.ppees.2023.125728","url":null,"abstract":"<div><p><span><span>As global warming progresses, plants may be forced to adapt to drastically changing environmental conditions. Arctic-alpine plants have been among the first to experience the </span>effects of climate change<span><span>. As a result, cold acclimation and freezing tolerance may become increasingly crucial for the survival as winter warming events and earlier snowmelt will cause increased exposure to occasional frost. The tribe Cochlearieae in the </span>mustard family (Brassicaceae) offers an instructive system for studying cold adaptation in evolutionary terms, as the two sister genera </span></span><em>Ionopsidium</em> and <span><em>Cochlearia</em></span><span><span> are distributed among different ecological habitats throughout the European continent and the far north into circumarctic regions. By applying an electrolyte leakage assay to leaves obtained from </span>plants cultivated<span> under controlled temperature regimes in growth chambers, the freezing tolerance of different </span></span><em>Ionopsidium</em> and <em>Cochlearia</em> species was assessed measuring lethal freezing temperature values (<em>LT</em><sub><em>50</em></sub> and <em>LT</em><sub><em>100</em></sub>), thereby allowing for a comparison across different species and accessions in their responses to cold. We hypothesized that, owing to varying selection pressures, geographically distant species would differ in freezing tolerance. Despite <em>Ionopsidium</em> occurring under warm and dry Mediterranean conditions and <em>Cochlearia</em><span> species distributed often at cold habitats, all accessions exhibited similar cold responses. The results may indicate that physiological adaptations of primary metabolic pathways to different stressors, such as salinity and drought, may confer an additional tolerance to cold; this is because all these stressors induce osmotic challenges.</span></p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43799892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Trait interactions effects on tropical tree demography depend on the environmental context 性状相互作用对热带树木种群的影响取决于环境背景
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-06-01 DOI: 10.1016/j.ppees.2023.125732
Vitor de A. Kamimura , Priscilla de P. Loiola , Carlos P. Carmona , Marco A. Assis , Carlos A. Joly , Flavio A.M. Santos , Simone A. Vieira , Luciana F. Alves , Valéria F. Martins , Eliana Ramos , Rafael F. Ramos , Francesco de Bello
{"title":"Trait interactions effects on tropical tree demography depend on the environmental context","authors":"Vitor de A. Kamimura ,&nbsp;Priscilla de P. Loiola ,&nbsp;Carlos P. Carmona ,&nbsp;Marco A. Assis ,&nbsp;Carlos A. Joly ,&nbsp;Flavio A.M. Santos ,&nbsp;Simone A. Vieira ,&nbsp;Luciana F. Alves ,&nbsp;Valéria F. Martins ,&nbsp;Eliana Ramos ,&nbsp;Rafael F. Ramos ,&nbsp;Francesco de Bello","doi":"10.1016/j.ppees.2023.125732","DOIUrl":"10.1016/j.ppees.2023.125732","url":null,"abstract":"<div><p>Although functional traits are defined based on their impact on demographic parameters, trait-demography relationships are often reported as weak. These weak relationships might be due to disregarding trait interactions and environmental contexts, which should modulate species trait-demography relationships. We applied different models, including boosted regression tree (BRT) models, to investigate changes in the relationship between traits and demographic rates of tropical tree species in plots along an elevational gradient and among time intervals between censuses, analyzing the effect of a strong drought event. Based on a large dataset of 18,000 tree individuals from 133 common species, distributed among twelve 1-ha plots (habitats) in the Atlantic Forest (Brazil), we evaluated how trait interactions and the environmental context influence the demographic rates (growth, mortality, and recruitment). Functional traits, trait-trait, and trait-habitat interactions predicted demography with a good fit through either BRTs or linear mixed-models. Changes in growth rates were best related to size (diameter), and mortality rates to habitats, while changes in recruitment rates were best related to the specific leaf area. Moreover, the influence of traits differed among time intervals, and for demographic parameters, habitat affected growth and mortality by interacting with diameter. Here, we provide evidence that trait-demography relationships can be improved when considering the environmental context (space and time) and trait interactions to cope with the complexity of changes in the demography of tropical tree communities. Thus, to expand predictions of demography based on functional traits, we show that it is useful to fully incorporate the concept of multiple trait-fitness optima, resulting from trait interactions in different habitats and growth conditions.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42529708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Abiotic stress tolerance can explain range size and filling in temperate woody plants 非生物抗逆性可以解释温带木本植物的范围大小和灌浆
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-06-01 DOI: 10.1016/j.ppees.2023.125734
Giacomo Puglielli , Enrico Tordoni , Lauri Laanisto , Jesse M. Kalwij , Michael J. Hutchings , Aelys M. Humphreys
{"title":"Abiotic stress tolerance can explain range size and filling in temperate woody plants","authors":"Giacomo Puglielli ,&nbsp;Enrico Tordoni ,&nbsp;Lauri Laanisto ,&nbsp;Jesse M. Kalwij ,&nbsp;Michael J. Hutchings ,&nbsp;Aelys M. Humphreys","doi":"10.1016/j.ppees.2023.125734","DOIUrl":"10.1016/j.ppees.2023.125734","url":null,"abstract":"<div><p><span><span>Efforts to understand the mechanisms explaining the relationship between abiotic stress tolerance and range size and filling have hitherto yielded contradictory results. Unlike previous studies that have focused on single stress factors, we here examine the extent to which range size and filling can be explained by tolerance of multiple abiotic stressors (cold, shade, drought and waterlogging). As range metrics, we used range size and filling (the ratio between actual and potential range) for 331 European and North American temperate </span>woody plant species. Stress tolerance strategies were expressed as a multivariate axis reflecting a cold/waterlogging-drought tolerance trade-off. We used mixed models to evaluate the relationship between range size/filling and this multivariate stress tolerance axis, using latitude as a covariate, and phylogeny and </span>plant functional type as random effects. Range size and stress tolerance were negatively correlated, mostly independently of latitude and continent. Thus, cold/wet-tolerant species had the largest range sizes and cold-sensitive/drought-tolerant species the smallest. In contrast, range filling mostly depended on latitude. Our results show that abiotic stress tolerance can explain interspecific differences in range size, and to a lesser extent range filling, which sets up predictions for range size variation in plants that go beyond latitude.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44613492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous competition and environmental filtering in woody communities of the understory of Eucalyptus plantations in the Cerrado 塞拉多桉树人工林林下木本群落的竞争与环境过滤
IF 3.6 3区 环境科学与生态学
Perspectives in Plant Ecology Evolution and Systematics Pub Date : 2023-06-01 DOI: 10.1016/j.ppees.2023.125731
Carlos M. Galván-Cisneros , Markus Gastauer , Jhonny Capichoni Massante , Pedro Manuel Villa , João Augusto Alves Meira-Neto
{"title":"Simultaneous competition and environmental filtering in woody communities of the understory of Eucalyptus plantations in the Cerrado","authors":"Carlos M. Galván-Cisneros ,&nbsp;Markus Gastauer ,&nbsp;Jhonny Capichoni Massante ,&nbsp;Pedro Manuel Villa ,&nbsp;João Augusto Alves Meira-Neto","doi":"10.1016/j.ppees.2023.125731","DOIUrl":"10.1016/j.ppees.2023.125731","url":null,"abstract":"<div><p><span>Dense and species-rich understory communities have been commonly found in old or abandoned stands of </span><span><em>Eucalyptus</em></span><span><span><span> plantations in the Cerrado domain presenting </span>plant species and </span>ecological niches that suggest a repository of the original biodiversity. This repository depends on the largely unknown effect of </span><em>Eucalyptus</em> plantations on their understories. We addressed this issue by testing if the effect of <em>Eucalyptus</em><span><span> trees on the assembly of Cerrado communities causes environmental filtering or competitive exclusion. For the test, 40 plots (20 inside stands and 20 outside) were allocated and all woody plants with a circumference at the ground level equal to or greater than 10 cm were sampled. Species richness, diversity indexes and species turnover were determined. The phylogenetic structure was evaluated at different scales using the values of Mean Pairwise Distance (MPD), the Mean Nearest Taxon Distance (MNTD), the Net Relatedness Index (NRI) and the Nearest Taxon Index (NTI), as well as phylobetadiversity indices. The metrics of alpha and beta phylogenetic diversity (NTI, MNTD, NRI and MPD, betaMPD and betaMNTD) fell within the random expectation in each plant community, suggesting a phylogenetic uniformity, but fewer plants of the </span>Fabaceae family than expected by chance were detected outside </span><em>Eucalyptus</em> stands suggesting that this family is filtered in inside <em>Eucalyptus</em> stands. Species richness is lower inside than outside <em>Eucalyptus</em> stands. The pattern is congruent with simultaneous environmental filtering and competitive exclusion in a context of niche conservatism which means that functional traits are conserved within phylogenetic lineages.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42781442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信