{"title":"Development on the rocks: Integrating molecular biology and the fossil record to reconstruct the evolution of leaf development","authors":"Alexandru M.F. Tomescu , Christopher Whitewoods","doi":"10.1016/j.ppees.2024.125797","DOIUrl":null,"url":null,"abstract":"<div><p>Leaves, encountered in the majority of modern tracheophytes, evolved multiple times independently in several lineages. We define leaves as lateral appendages that share a common set of characters: vascularization, determinacy, regular arrangement, bilateral symmetry and, in most cases, adaxial-abaxial (dorsiventral) polarity. In this review we integrate data from developmental genetics and the fossil record to understand how the molecular and cellular mechanisms of leaf development evolved. We show that lycopsid leaves likely evolved once, and earlier, than euphyllophyte leaves, and that euphyllophyte leaves all evolved from lateral branching systems that were produced at regular intervals around the stem. We also show that the mosaic pattern of distribution and tempo of evolution of leaf-defining features (such as bilateral symmetry and dorsiventral polarity) among the different lineages suggests that these features evolved independently. Overall, at the level of the entire tracheophyte clade, integration of developmental, regulatory and fossil data reveals three overarching patterns: (1) the different leaf characters evolved independently throughout tracheophyte phylogeny and their regulatory pathways were assembled independently, only to become tightly integrated with each other later in the evolution of different lineages; (2) bilateral symmetry is a distinct and evolutionarily independent leaf feature from dorsiventral polarity; (3) regular arrangement is the most plesiomorphic and earliest-evolving leaf-defining feature across tracheophytes.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"64 ","pages":"Article 125797"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Plant Ecology Evolution and Systematics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1433831924000209","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leaves, encountered in the majority of modern tracheophytes, evolved multiple times independently in several lineages. We define leaves as lateral appendages that share a common set of characters: vascularization, determinacy, regular arrangement, bilateral symmetry and, in most cases, adaxial-abaxial (dorsiventral) polarity. In this review we integrate data from developmental genetics and the fossil record to understand how the molecular and cellular mechanisms of leaf development evolved. We show that lycopsid leaves likely evolved once, and earlier, than euphyllophyte leaves, and that euphyllophyte leaves all evolved from lateral branching systems that were produced at regular intervals around the stem. We also show that the mosaic pattern of distribution and tempo of evolution of leaf-defining features (such as bilateral symmetry and dorsiventral polarity) among the different lineages suggests that these features evolved independently. Overall, at the level of the entire tracheophyte clade, integration of developmental, regulatory and fossil data reveals three overarching patterns: (1) the different leaf characters evolved independently throughout tracheophyte phylogeny and their regulatory pathways were assembled independently, only to become tightly integrated with each other later in the evolution of different lineages; (2) bilateral symmetry is a distinct and evolutionarily independent leaf feature from dorsiventral polarity; (3) regular arrangement is the most plesiomorphic and earliest-evolving leaf-defining feature across tracheophytes.
期刊介绍:
Perspectives in Plant Ecology, Evolution and Systematics (PPEES) publishes outstanding and thought-provoking articles of general interest to an international readership in the fields of plant ecology, evolution and systematics. Of particular interest are longer, in-depth articles that provide a broad understanding of key topics in the field. There are six issues per year.
The following types of article will be considered:
Full length reviews
Essay reviews
Longer research articles
Meta-analyses
Foundational methodological or empirical papers from large consortia or long-term ecological research sites (LTER).