Trends in Environmental Analytical Chemistry最新文献

筛选
英文 中文
Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants 分子印迹聚合物(MIPs)结合纳米材料在环境污染物电化学传感中的应用
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00176
Sultana Rahman , Burcin Bozal-Palabiyik , Didem Nur Unal , Cem Erkmen , Muhammad Siddiq , Afzal Shah , Bengi Uslu
{"title":"Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants","authors":"Sultana Rahman ,&nbsp;Burcin Bozal-Palabiyik ,&nbsp;Didem Nur Unal ,&nbsp;Cem Erkmen ,&nbsp;Muhammad Siddiq ,&nbsp;Afzal Shah ,&nbsp;Bengi Uslu","doi":"10.1016/j.teac.2022.e00176","DOIUrl":"10.1016/j.teac.2022.e00176","url":null,"abstract":"<div><p><span>It is known that environmental pollution, which is the result of human-induced industrial, domestic, and agricultural practices, poses a threat to our planet. The increasing human population caused several problems such as water and air pollution, which have reached levels threatening human health. There are many different hazardous chemical and biological environmental pollutants in soil, air, and wastewater. It is extremely important to evaluate these health risks and detect these pollutants. The use of electrochemical methods for the detection of environmental pollutants comes to the forefront recently with advantages such as sensitivity, fast response, low cost, and practical use by miniaturization. The molecular imprinting technique is a popular method used for substance analysis by creating a cavity specific to the substance to be analyzed with the polymer used. The use of </span>molecularly imprinted polymer<span> in electrochemical methods and its modification with various nanomaterials bring advantages such as high selectivity, robustness, and sensitivity to electrochemical sensors. Here, the sensitive determination of environmental pollutants with different nanomaterial-modified molecularly imprinted polymer-based electrochemical sensors, the use of different polymerization techniques, and nano-sized modification agents in sensors are evaluated by reviewing recent studies in the literature.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00176"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48329226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Upsurgence of smartphone as an economical, portable, and consumer-friendly analytical device/interface platform for digital sensing of hazardous environmental ions 智能手机作为一种经济、便携和消费者友好的分析设备/接口平台的兴起,用于有害环境离子的数字传感
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00177
Priya Yadav , Lalita Yadav , Harshita Laddha , Madhu Agarwal , Ragini Gupta
{"title":"Upsurgence of smartphone as an economical, portable, and consumer-friendly analytical device/interface platform for digital sensing of hazardous environmental ions","authors":"Priya Yadav ,&nbsp;Lalita Yadav ,&nbsp;Harshita Laddha ,&nbsp;Madhu Agarwal ,&nbsp;Ragini Gupta","doi":"10.1016/j.teac.2022.e00177","DOIUrl":"10.1016/j.teac.2022.e00177","url":null,"abstract":"<div><p>Ions play a pivotal role in the biological regulatory processes and catalyzing enzymatic reactions<span>; however, increased levels in the human body leads to many health risks or toxicity. To circumvent this, periodic and precise monitoring of significant ions in environmental, biological, chemical, and food samples are necessary, which need to be mapped/monitored continuously. This has prompted researchers to develop cost-effective, handy, and rapid techniques which can be fruitful for even untrained personnel by obviating manual user instructions, lengthy sample preparation steps, and costly instruments. The exploitation of user-friendly behavior, affordable price, and ubiquitous usage of smartphones has led to the development of a plethora of smartphone-based methodologies whereby they can serve as devices, detectors, or interfaces. Their in-built high-resolution rear camera, ambient light sensors, wireless connectivity, internal storage, and global positioning systems minimize the cost and simplify the fabrication of developing point-of-care testing devices, making them operable in challenging conditions with limited resources. Coupling smartphones with iCloud technology allows the synchronous storing and online transmitting of databases to consumers even in remote areas, which helps in real-time monitoring and continuously scrutinizing contaminants in the environment. This is not an exhaustive review but enumerates the progress made in the development of smartphone-based analytical aids by incorporating advanced device fabrication strategies and hassle-free analytical protocols during the past years (2014–2021). An account of key features like sensing performance of the developed methods in terms of selectivity, sensitivity, and detection limits and their limitations for recognition of environmental and biologically eminent ions is also discussed. Lastly, this review paves the way for the development of advanced innovative analytical techniques employing smartphone technology for the foreseeable future to ensure point-of-care human safety.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00177"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43479906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Chitosan-based adsorbents for analytical sample preparation and removal of pollutants from aqueous media: Progress, challenges and outlook 壳聚糖基吸附剂用于分析样品制备和去除水介质中的污染物:进展、挑战和前景
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00185
Muhammad Sajid
{"title":"Chitosan-based adsorbents for analytical sample preparation and removal of pollutants from aqueous media: Progress, challenges and outlook","authors":"Muhammad Sajid","doi":"10.1016/j.teac.2022.e00185","DOIUrl":"https://doi.org/10.1016/j.teac.2022.e00185","url":null,"abstract":"<div><p><span>The development of greener and more efficient materials for extracting environmental contaminants from various matrices is a growing area of research. Materials that do not cause secondary pollution are highly desirable in such applications. Chitosan (CS) is a non-toxic </span>biopolymer<span><span><span> enriched with amino and hydroxyl groups, used not only for extracting pollutants but also for crosslinking and functionalizing CS with other materials. The composites of CS with carbon, metal-organic frameworks, metal and metal oxide </span>nanoparticles<span>, and magnetic materials have been used to extract various inorganic and organic analytes in aqueous samples. CS-based sorbents have been evaluated across multiple extraction techniques, such as dispersive </span></span>solid phase extraction<span><span>, magnetic solid phase extraction, </span>solid phase microextraction, syringe solid phase extraction, membrane-protected solid phase extraction, and others. This review offers an overview of the CS-based sorbents in analytical extractions, highlighting their strengths, weaknesses, and potential solutions. At the end, a brief overview of the CS-based adsorbents in water treatment applications is also provided.</span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00185"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137351890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample preparation, instrumental analysis, and natural distribution of complex organic pollutants in the wastewater from unconventional gas production 非常规天然气生产废水中复杂有机污染物的样品制备、仪器分析和自然分布
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00183
Yu Chen , Jin Zhang , Weixiong Huang , Rongfu Huang
{"title":"Sample preparation, instrumental analysis, and natural distribution of complex organic pollutants in the wastewater from unconventional gas production","authors":"Yu Chen ,&nbsp;Jin Zhang ,&nbsp;Weixiong Huang ,&nbsp;Rongfu Huang","doi":"10.1016/j.teac.2022.e00183","DOIUrl":"10.1016/j.teac.2022.e00183","url":null,"abstract":"<div><p><span>Large amounts of flowback and produced water (FPW) have been generated from hydraulic fracturing process for the production of unconventional gas such as shale gas. Complex organic pollutants are abundantly present in FPW with revealed toxicity to aquatic organisms and these contaminants may transfer into surrounding aquatic environment. Characterization and determination of complicated organic pollutants in FPW remains a challenge due to its complex composition and high salinity matrix. This review article covers the progress of recent 5 years regarding the sample preparation and </span>instrumental analysis methods and thus summarizes the advantages and disadvantages of these methods for critical analysis of organic contaminants in FPW samples. Furthermore, the natural distribution of detected organic compounds and their transformation were reviewed and discussed to enhance the understanding of spatial and temporal behaviors of these organic pollutants in natural environment, paving the way for future development of pollution control policies and strategies. Enlightened by the studies of FPW contamination in the US, the investigations of FPW contamination in China continued to grow due to rapidly growing production of shale gas in China and resulted pollution.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00183"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"55178536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An insight on sampling, identification, quantification and characteristics of microplastics in solid wastes 固体废物中微塑料的取样、鉴定、定量和特性研究
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00181
Palas Samanta , Sukhendu Dey , Debajyoti Kundu , Deblina Dutta , Rohit Jambulkar , Rahul Mishra , Apurba Ratan Ghosh , Sunil Kumar
{"title":"An insight on sampling, identification, quantification and characteristics of microplastics in solid wastes","authors":"Palas Samanta ,&nbsp;Sukhendu Dey ,&nbsp;Debajyoti Kundu ,&nbsp;Deblina Dutta ,&nbsp;Rohit Jambulkar ,&nbsp;Rahul Mishra ,&nbsp;Apurba Ratan Ghosh ,&nbsp;Sunil Kumar","doi":"10.1016/j.teac.2022.e00181","DOIUrl":"10.1016/j.teac.2022.e00181","url":null,"abstract":"<div><p>Microplastics (MPs) have attracted wide attention all over the world as a remarkable pollutant. While MPs are spreading throughout several complex environmental matrices, various experiments till date have been preliminary concentrate on aquatic ecosystems. Terrestrial sources namely solid waste-origin have remains unexplored, although they contribute largely for aquatic microplastics origin. Simultaneously, terrestrial systems under human activity, like healthcare units, are likely to be polluted by various plastic ingredients. Solid waste MPs sources primarily include sanitary landfilling, food waste, wastewater treatment end-product (sludge), tire wear, textile washing and paint failure. These microplastics caused adverse impacts on ecosystem, environment, and health. Accordingly, the present study addressed solid waste MPs’ occurrence and sources, identification, quantification, characterization, fate, and degradation pathways for developing comprehensive management strategies following the principles of circular economy. In particularly, this paper critically demonstrated solid waste MPs sources, solid waste MPs sampling followed by identification and quantification by adopting combined chemical (<em>e.g.,</em> spectroscopy <em>viz.,</em> Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy), physical (<em>e.g.,</em><span> microscopy<span> such as transmission or scanning electronic microscopy, TEM or SEM) and thermal analyses. Additionally, the strengths and limitations of each analytical technique are discussed critically with practical aspect. Further, the MPs related national and international regulations or laws and their subsequent relevance to solid waste MPs management with future challenges are discussed very critically. Finally, the outcomes of the review paper will be valuable to different stakeholders for effective policy implementation.</span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00181"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48060309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Advances in on-site analytical sample preparation for analysis of environmental waters: A review 环境水分析现场分析样品制备研究进展
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00175
Muhammad Sajid
{"title":"Advances in on-site analytical sample preparation for analysis of environmental waters: A review","authors":"Muhammad Sajid","doi":"10.1016/j.teac.2022.e00175","DOIUrl":"10.1016/j.teac.2022.e00175","url":null,"abstract":"<div><p>The collection, storage, and transportation of water samples from far-off places to the labs is a pretty challenging task. It can cause contamination, degradation, or losses of the analytes, leading to errors in the analysis. On-site sample preparation provides an opportunity to extract the analytes into suitable extraction media that preserves the analytes and is easy to handle in terms of storage and transportation. However, the required equipment for on-site sample preparation should be simple, portable, and energy-efficient. Solvent- and sorbent-based microextraction approaches and the modern variants of solid-phase extraction have shown great potential for on-site sample preparation because of reduced consumption of solvents and low energy requirement. This review provides an overview of the application of different extraction techniques in on-site sample preparation, their advantages, and their limitations. The recent advances combining on-site extraction and analysis have also been critically discussed.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00175"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43097386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Analytical advances to study the air – water interfacial chemistry in the atmosphere 大气中空气-水界面化学分析研究进展
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00182
Fei Zhang , Xiao-Ying Yu , Zhibin Wang
{"title":"Analytical advances to study the air – water interfacial chemistry in the atmosphere","authors":"Fei Zhang ,&nbsp;Xiao-Ying Yu ,&nbsp;Zhibin Wang","doi":"10.1016/j.teac.2022.e00182","DOIUrl":"10.1016/j.teac.2022.e00182","url":null,"abstract":"<div><p><span>Formation of aqueous secondary organic aerosol (aqSOA) at the air – liquid interface recently has attracted a lot of attention in </span>atmospheric chemistry. The discrepancies in mass distributions, aerosol oxidative capacity, liquid water content, hygroscopic growth of aerosols, and formation of clouds and fogs suggest that interfacial chemistry play a more important role than previously deemed. However, detailed mechanisms at the air–water interface remain unclear owing to the lack of comprehensive understanding that underpins complicated interfacial phenomena, which are not easily measurable from field campaigns, laboratory measurements, or computational simulations. This review highlights relevant and recent technical advancement employed to study aqSOA encompassing spectroscopy and mass spectrometry. The current knowledge on the aqSOA processes is digested with an emphasis on recent research of interfacial aqSOA formation including laboratory studies and model simulations. Finally, future directions of the interfacial chemistry are recommended for field and laboratory studies as well as theoretical efforts to resolve interfacial challenges in atmospheric chemistry.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00182"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43043001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart nano-architectures as potential sensing tools for detecting heavy metal ions in aqueous matrices 智能纳米结构作为检测水基质中重金属离子的潜在传感工具
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00179
Tahir Rasheed , Sameera Shafi , Farooq Sher
{"title":"Smart nano-architectures as potential sensing tools for detecting heavy metal ions in aqueous matrices","authors":"Tahir Rasheed ,&nbsp;Sameera Shafi ,&nbsp;Farooq Sher","doi":"10.1016/j.teac.2022.e00179","DOIUrl":"10.1016/j.teac.2022.e00179","url":null,"abstract":"<div><p>The discharge of heavy metal ions<span><span> into water resources as a result of human activities has become a global issue. Contamination with heavy metal ions poses a major threat to the environment and human health. Therefore, there is a dire need to probe the presence of heavy metal ions in a more selective, facile, quick, cost-effective and sensitive way. Conventional sensors are being utilized to sense heavy metal ions; however, various challenges and limitations like interference, overlapping of oxidation potential<span><span>, selectivity and sensitivity are associated with them that limit their in-field applicability. Hence, nanomaterial based chemical sensors have emerged as an alternative substitute and are extensively employed for the detection of heavy metal ions as a potent analytical tool. The incorporation of nanomaterials in sensors increases their sensitivity, selectivity, portability, on-site detection capability and device performance. Nanomaterial based electrodes exhibit enhanced performance because surface of electrode at nano-scale level offers high catalytic potential, large active surface area and high conductivity. Therefore, this review addresses the recent progress on chemical sensors based on different nanomaterials such as </span>carbon nanotubes (CNTs), </span></span>metal nanoparticles<span>, graphene, carbon quantum dots<span> and nanocomposites for sensing heavy metals ions using different sensing approaches. Furthermore, various types of optical sensors such as fluorescence, luminescence and colorimetry sensors have been presented in detail.</span></span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00179"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43307279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Environmental significance of wearable sensors based on MXene and graphene 基于MXene和石墨烯的可穿戴传感器的环境意义
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00180
Ayesha Aziz , Muhammad Asif , Ghazala Ashraf , Tayyaba Iftikhar , Wajid Hussain , Shenqi Wang
{"title":"Environmental significance of wearable sensors based on MXene and graphene","authors":"Ayesha Aziz ,&nbsp;Muhammad Asif ,&nbsp;Ghazala Ashraf ,&nbsp;Tayyaba Iftikhar ,&nbsp;Wajid Hussain ,&nbsp;Shenqi Wang","doi":"10.1016/j.teac.2022.e00180","DOIUrl":"10.1016/j.teac.2022.e00180","url":null,"abstract":"<div><p>Conductive layered materials such as MXenes (<em>e.g.,</em><span> transition metal carbides<span>, nitrides<span>, and carbonitrides), graphene and their derivatives have attracted tremendous research interests in diverse fields of research for their unique structured merits and outstanding physical and chemical properties. Benefitting from their unique layered structures and fascinating multifunctional characteristic, MXenes and graphene serve as vital components in a variety of wearable devices. Especially, due to their large surface area and high electrocatalytic activity, these materials have also demonstrated great promise in biophysical and biochemical sensing systems. Following an introduction into the field, we summarize the recent progress in wearable sensors that can be accomplished by using layered materials, with a specific focus on kinematic, mechanical, thermal, pressure and strain sensors. A further large section underscores the recent progress in MXenes and graphene based wearable biochemical sensors including electrolyte monitoring, glucose monitoring, micro/mcromolecular organics metabolite, volatile gases monitoring and humidity sensors. The next section covers the sensing of small biomolecules serving as biomarkers, which are of great significance for early diagnosis and treatment of a spectrum of diseases. This review underscores the recent progress in wearable sensors to be used in different physiological and environmental signals. Finally, the review concludes with a debate on current challenges being faced and future perspectives.</span></span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00180"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45627793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment 用于检测食物、水、人体体液和环境中的有毒污染物的适体生物传感器的进展
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2022-12-01 DOI: 10.1016/j.teac.2022.e00184
Ulhas Sopanrao Kadam , Jong Chan Hong
{"title":"Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment","authors":"Ulhas Sopanrao Kadam ,&nbsp;Jong Chan Hong","doi":"10.1016/j.teac.2022.e00184","DOIUrl":"10.1016/j.teac.2022.e00184","url":null,"abstract":"<div><p>Detection of toxic small molecule contaminants with sensitivity, accuracy, and specificity is a challenging task. Traditionally used HPLC and mass spectrometry-based assays suffer from several drawbacks, including lengthy sample preparation, heavy instrumentation, and the need for expert technicians. Specific, measurable, accurate, robust, and time-saving (SMART) biosensors are needed to detect toxic substances. Aptamers provide unique opportunities for the rapid development of SMART biosensors to meet above challenges. Since aptamers are short nucleotide sequences; they are easy for chemical synthesis and functional modifications. Aptamers acquire specific molecule recognition potential through unique chemical bonding, including H-bonds, pi-pi, van der Waals, and hydrophobic interactions. For the discovery of aptamers, the SELEX process is used. Recently, efforts have been made to develop aptamers to detect toxic small molecules like antibiotics, pesticides, insecticides, pollutants, toxins, and allergens. Aptamer technology is a promising tool for analyzing these chemicals from diverse matrices. This review provides an update on advances in nucleic acid-based aptameric sensors for molecular diagnostics of toxic chemical from food, water, human fluids, and the environment.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00184"},"PeriodicalIF":11.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214158822000319/pdfft?md5=b25504f726cb93dfcfb6f6f62da7bc7e&pid=1-s2.0-S2214158822000319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47175011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信