Science RoboticsPub Date : 2024-07-24DOI: 10.1126/scirobotics.adk6717
Jae In Kim, Jaeyoun Choi, Junhyung Kim, Junkyung Song, Jaebum Park, Yong-Lae Park
{"title":"Bilateral Back Extensor Exosuit for multidimensional assistance and prevention of spinal injuries","authors":"Jae In Kim, Jaeyoun Choi, Junhyung Kim, Junkyung Song, Jaebum Park, Yong-Lae Park","doi":"10.1126/scirobotics.adk6717","DOIUrl":"10.1126/scirobotics.adk6717","url":null,"abstract":"<div >Lumbar spine injuries resulting from heavy or repetitive lifting remain a prevalent concern in workplaces. Back-support devices have been developed to mitigate these injuries by aiding workers during lifting tasks. However, existing devices often fall short in providing multidimensional force assistance for asymmetric lifting, an essential feature for practical workplace use. In addition, validation of device safety across the entire human spine has been lacking. This paper introduces the Bilateral Back Extensor Exosuit (BBEX), a robotic back-support device designed to address both functionality and safety concerns. The design of the BBEX draws inspiration from the anatomical characteristics of the human spine and back extensor muscles. Using a multi–degree-of-freedom architecture and serially connected linear actuators, the device’s components are strategically arranged to closely mimic the biomechanics of the human spine and back extensor muscles. To establish the efficacy and safety of the BBEX, a series of experiments with human participants was conducted. Eleven healthy male participants engaged in symmetric and asymmetric lifting tasks while wearing the BBEX. The results confirm the ability of the BBEX to provide effective multidimensional force assistance. Moreover, comprehensive safety validation was achieved through analyses of muscle fatigue in the upper and the lower erector spinae muscles, as well as mechanical loading on spinal joints during both lifting scenarios. By seamlessly integrating functionality inspired by human biomechanics with a focus on safety, this study offers a promising solution to address the persistent challenge of preventing lumbar spine injuries in demanding work environments.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-07-17DOI: 10.1126/scirobotics.adk4533
Terry Ching, Joseph Zhi Wei Lee, Shane Kyi Hla Win, Luke Soe Thura Win, Danial Sufiyan, Charlotte Pei Xuan Lim, Nidhi Nagaraju, Yi-Chin Toh, Shaohui Foong, Michinao Hashimoto
{"title":"Crawling, climbing, perching, and flying by FiBa soft robots","authors":"Terry Ching, Joseph Zhi Wei Lee, Shane Kyi Hla Win, Luke Soe Thura Win, Danial Sufiyan, Charlotte Pei Xuan Lim, Nidhi Nagaraju, Yi-Chin Toh, Shaohui Foong, Michinao Hashimoto","doi":"10.1126/scirobotics.adk4533","DOIUrl":"10.1126/scirobotics.adk4533","url":null,"abstract":"<div >This paper introduces an approach to fabricating lightweight, untethered soft robots capable of diverse biomimetic locomotion. Untethering soft robotics from electrical or pneumatic power remains one of the prominent challenges within the field. The development of functional untethered soft robotic systems hinges heavily on mitigating their weight; however, the conventional weight of pneumatic network actuators (pneu-nets) in soft robots has hindered untethered operations. To address this challenge, we developed film-balloon (FiBa) modules that drastically reduced the weight of soft actuators. FiBa modules combine transversely curved polymer thin films and three-dimensionally printed pneumatic balloons to achieve varied locomotion modes. These lightweight FiBa modules serve as building blocks to create untethered soft robots mimicking natural movement strategies. These modules substantially reduce overall robot weight, allowing the integration of components such as pumps, valves, batteries, and control boards, thereby enabling untethered operation. FiBa modules integrated with electronic components demonstrated four bioinspired modes of locomotion, including turtle-inspired crawling, inchworm-inspired climbing, bat-inspired perching, and ladybug-inspired flying. Overall, our study offers an alternative tool for designing and customizing lightweight, untethered soft robots with advanced functionalities. The reduction of the weight of soft robots enabled by our approach opens doors to a wide range of applications, including disaster relief, space exploration, remote sensing, and search and rescue operations, where lightweight, untethered soft robotic systems are essential.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-07-17DOI: 10.1126/scirobotics.adk0310
Tom van Dijk, Christophe De Wagter, Guido C. H. E. de Croon
{"title":"Visual route following for tiny autonomous robots","authors":"Tom van Dijk, Christophe De Wagter, Guido C. H. E. de Croon","doi":"10.1126/scirobotics.adk0310","DOIUrl":"10.1126/scirobotics.adk0310","url":null,"abstract":"<div >Navigation is an essential capability for autonomous robots. In particular, visual navigation has been a major research topic in robotics because cameras are lightweight, power-efficient sensors that provide rich information on the environment. However, the main challenge of visual navigation is that it requires substantial computational power and memory for visual processing and storage of the results. As of yet, this has precluded its use on small, extremely resource-constrained robots such as lightweight drones. Inspired by the parsimony of natural intelligence, we propose an insect-inspired approach toward visual navigation that is specifically aimed at extremely resource-restricted robots. It is a route-following approach in which a robot’s outbound trajectory is stored as a collection of highly compressed panoramic images together with their spatial relationships as measured with odometry. During the inbound journey, the robot uses a combination of odometry and visual homing to return to the stored locations, with visual homing preventing the buildup of odometric drift. A main advancement of the proposed strategy is that the number of stored compressed images is minimized by spacing them apart as far as the accuracy of odometry allows. To demonstrate the suitability for small systems, we implemented the strategy on a tiny 56-gram drone. The drone could successfully follow routes up to 100 meters with a trajectory representation that consumed less than 20 bytes per meter. The presented method forms a substantial step toward the autonomous visual navigation of tiny robots, facilitating their more widespread application.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adk0310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-07-17DOI: 10.1126/scirobotics.adl0307
Tianyu Chen, Xudong Yang, Bojian Zhang, Junwei Li, Jie Pan, Yifan Wang
{"title":"Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation","authors":"Tianyu Chen, Xudong Yang, Bojian Zhang, Junwei Li, Jie Pan, Yifan Wang","doi":"10.1126/scirobotics.adl0307","DOIUrl":"10.1126/scirobotics.adl0307","url":null,"abstract":"<div >Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task. Here, inspired by the scales that cover creatures like pangolins and fish, we developed a robotic structure that can vary its stiffness and change shape simultaneously in a highly integrated, compact body. The scale-inspired layered structure (SAILS) was enabled by the inversely designed programmable surface patterns of the scales. After fabrication, SAILS was inherently soft and flexible. When sealed in an elastic envelope and subjected to negative confining pressure, it transitioned to its designated shape and concurrently became stiff. SAILS could be actuated at frequencies as high as 5 hertz and achieved an apparent bending modulus change of up to 53 times between its soft and stiff states. We further demonstrated both the versatility of SAILS by developing a soft robot that is amphibious and adaptive and tunable landing systems for drones with the capacity to accommodate different loads.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-06-26DOI: 10.1126/scirobotics.adj3665
Uma Prashant Navare, Francesca Ciardo, Kyveli Kompatsiari, Davide De Tommaso, Agnieszka Wykowska
{"title":"When performing actions with robots, attribution of intentionality affects the sense of joint agency","authors":"Uma Prashant Navare, Francesca Ciardo, Kyveli Kompatsiari, Davide De Tommaso, Agnieszka Wykowska","doi":"10.1126/scirobotics.adj3665","DOIUrl":"10.1126/scirobotics.adj3665","url":null,"abstract":"<div >Sense of joint agency (SoJA) is the sense of control experienced by humans when acting with others to bring about changes in the shared environment. SoJA is proposed to arise from the sensorimotor predictive processes underlying action control and monitoring. Because SoJA is a ubiquitous phenomenon occurring when we perform actions with other humans, it is of great interest and importance to understand whether—and under what conditions—SoJA occurs in collaborative tasks with humanoid robots. In this study, using behavioral measures and neural responses measured by electroencephalography (EEG), we aimed to evaluate whether SoJA occurs in joint action with the humanoid robot iCub and whether its emergence is influenced by the perceived intentionality of the robot. Behavioral results show that participants experienced SoJA with the robot partner when it was presented as an intentional agent but not when it was presented as a mechanical artifact. EEG results show that the mechanism that influences the emergence of SoJA in the condition when the robot is presented as an intentional agent is the ability to form similarly accurate predictions about the sensory consequences of our own and others’ actions, leading to similar modulatory activity over sensory processing. Together, our results shed light on the joint sensorimotor processing mechanisms underlying the emergence of SoJA in human-robot interaction and underscore the importance of attribution of intentionality to the robot in human-robot collaboration.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-06-26DOI: 10.1126/scirobotics.adq6361
Robin R. Murphy
{"title":"Would you risk humanity’s survival on a robot built in two years?","authors":"Robin R. Murphy","doi":"10.1126/scirobotics.adq6361","DOIUrl":"10.1126/scirobotics.adq6361","url":null,"abstract":"<div ><i>Project Hail Mary</i> reflects real-world technical readiness assessment processes for robotics.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-06-26DOI: 10.1126/scirobotics.adi8808
Maria Bauza, Antonia Bronars, Yifan Hou, Ian Taylor, Nikhil Chavan-Dafle, Alberto Rodriguez
{"title":"SimPLE, a visuotactile method learned in simulation to precisely pick, localize, regrasp, and place objects","authors":"Maria Bauza, Antonia Bronars, Yifan Hou, Ian Taylor, Nikhil Chavan-Dafle, Alberto Rodriguez","doi":"10.1126/scirobotics.adi8808","DOIUrl":"10.1126/scirobotics.adi8808","url":null,"abstract":"<div >Existing robotic systems have a tension between generality and precision. Deployed solutions for robotic manipulation tend to fall into the paradigm of one robot solving a single task, lacking “precise generalization,” or the ability to solve many tasks without compromising on precision. This paper explores solutions for precise and general pick and place. In precise pick and place, or kitting, the robot transforms an unstructured arrangement of objects into an organized arrangement, which can facilitate further manipulation. We propose SimPLE (Simulation to Pick Localize and placE) as a solution to precise pick and place. SimPLE learns to pick, regrasp, and place objects given the object’s computer-aided design model and no prior experience. We developed three main components: task-aware grasping, visuotactile perception, and regrasp planning. Task-aware grasping computes affordances of grasps that are stable, observable, and favorable to placing. The visuotactile perception model relies on matching real observations against a set of simulated ones through supervised learning to estimate a distribution of likely object poses. Last, we computed a multistep pick-and-place plan by solving a shortest-path problem on a graph of hand-to-hand regrasps. On a dual-arm robot equipped with visuotactile sensing, SimPLE demonstrated pick and place of 15 diverse objects. The objects spanned a wide range of shapes, and SimPLE achieved successful placements into structured arrangements with 1-mm clearance more than 90% of the time for six objects and more than 80% of the time for 11 objects.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-06-26DOI: 10.1126/scirobotics.adl2007
Zhengxing Li, Yaou Duan, Fangyu Zhang, Hao Luan, Wei-Ting Shen, Yiyan Yu, Nianfei Xian, Zhongyuan Guo, Edward Zhang, Lu Yin, Ronnie H. Fang, Weiwei Gao, Liangfang Zhang, Joseph Wang
{"title":"Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease","authors":"Zhengxing Li, Yaou Duan, Fangyu Zhang, Hao Luan, Wei-Ting Shen, Yiyan Yu, Nianfei Xian, Zhongyuan Guo, Edward Zhang, Lu Yin, Ronnie H. Fang, Weiwei Gao, Liangfang Zhang, Joseph Wang","doi":"10.1126/scirobotics.adl2007","DOIUrl":"10.1126/scirobotics.adl2007","url":null,"abstract":"<div >Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed “algae-MΦNP-robot,” for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane–coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines “on the fly.” The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-06-26DOI: 10.1126/scirobotics.adr0223
{"title":"Erratum for the Research Article “Fully neuromorphic vision and control for autonomous drone flight” by F. Paredes-Vallés et al.","authors":"","doi":"10.1126/scirobotics.adr0223","DOIUrl":"10.1126/scirobotics.adr0223","url":null,"abstract":"","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-06-26DOI: 10.1126/scirobotics.adq6387
Tom Ziemke
{"title":"Ironies of social robotics","authors":"Tom Ziemke","doi":"10.1126/scirobotics.adq6387","DOIUrl":"10.1126/scirobotics.adq6387","url":null,"abstract":"<div >Aiming for “humanlike” or “natural” interactions can make social robots and their limitations more difficult to understand.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}