Science RoboticsPub Date : 2024-10-23DOI: 10.1126/scirobotics.adm6991
Angelos Angelopoulos, James F. Cahoon, Ron Alterovitz
{"title":"Transforming science labs into automated factories of discovery","authors":"Angelos Angelopoulos, James F. Cahoon, Ron Alterovitz","doi":"10.1126/scirobotics.adm6991","DOIUrl":"https://doi.org/10.1126/scirobotics.adm6991","url":null,"abstract":"Laboratories in chemistry, biochemistry, and materials science are at the leading edge of technology, discovering molecules and materials to unlock capabilities in energy, catalysis, biotechnology, sustainability, electronics, and more. Yet, most modern laboratories resemble factories from generations past, with a large reliance on humans manually performing synthesis and characterization tasks. Robotics and automation can enable scientific experiments to be conducted faster, more safely, more accurately, and with greater reproducibility, allowing scientists to tackle large societal problems in domains such as health and energy on a shorter timescale. We define five levels of laboratory automation, from laboratory assistance to full automation. We also introduce robotics research challenges that arise when increasing levels of automation and when increasing the generality of tasks within the laboratory. Robots are poised to transform science labs into automated factories of discovery that accelerate scientific progress.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"1 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-10-23DOI: 10.1126/scirobotics.adt3828
Robin R. Murphy
{"title":"Ted Chiang imagines a computational theory of robots","authors":"Robin R. Murphy","doi":"10.1126/scirobotics.adt3828","DOIUrl":"10.1126/scirobotics.adt3828","url":null,"abstract":"<div >Two short science fiction stories, “Exhalation” and “Seventy-Two Letters”, explore robots inside and out.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-10-23DOI: 10.1126/scirobotics.adn1125
Michael Ishida, Fidji Berio, Valentina Di Santo, Neil H. Shubin, Fumiya Iida
{"title":"Paleoinspired robotics as an experimental approach to the history of life","authors":"Michael Ishida, Fidji Berio, Valentina Di Santo, Neil H. Shubin, Fumiya Iida","doi":"10.1126/scirobotics.adn1125","DOIUrl":"https://doi.org/10.1126/scirobotics.adn1125","url":null,"abstract":"Paleontologists must confront the challenge of studying the forms and functions of extinct species for which data from preserved fossils are extremely limited, yielding only a fragmented picture of life in deep time. In response to this hurdle, we describe the nascent field of paleoinspired robotics, an innovative method that builds upon established techniques in bioinspired robotics, enabling the exploration of the biology of ancient organisms and their evolutionary trajectories. This Review presents ways in which robotic platforms can fill gaps in existing research using the exemplars of notable transitions in vertebrate locomotion. We examine recent case studies in experimental paleontology, highlighting substantial contributions made by engineering and robotics techniques, and further assess how the efficient application of robotic technologies in close collaboration with paleontologists and biologists can offer additional insights into the study of evolution that were previously unattainable.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"93 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-10-23DOI: 10.1126/scirobotics.adm8233
Wenkun Dou, Guanqiao Shan, Qili Zhao, Manpreet Malhi, Aojun Jiang, Zhuoran Zhang, Andrés González-Guerra, Shaojie Fu, Junhui Law, Robert M. Hamilton, Juan A. Bernal, Xinyu Liu, Yu Sun, Jason T. Maynes
{"title":"Robotic manipulation of cardiomyocytes to identify gap junction modifiers for arrhythmogenic cardiomyopathy","authors":"Wenkun Dou, Guanqiao Shan, Qili Zhao, Manpreet Malhi, Aojun Jiang, Zhuoran Zhang, Andrés González-Guerra, Shaojie Fu, Junhui Law, Robert M. Hamilton, Juan A. Bernal, Xinyu Liu, Yu Sun, Jason T. Maynes","doi":"10.1126/scirobotics.adm8233","DOIUrl":"https://doi.org/10.1126/scirobotics.adm8233","url":null,"abstract":"Arrhythmogenic cardiomyopathy (ACM) is a leading cause of sudden cardiac death among young adults. Aberrant gap junction remodeling has been linked to disease-causative mutations in plakophilin-2 ( <jats:italic>PKP2</jats:italic> ). Although gap junctions are a key therapeutic target, measurement of gap junction function in preclinical disease models is technically challenging. To quantify gap junction function with high precision and high consistency, we developed a robotic cell manipulation system with visual feedback from digital holographic microscopy for three-dimensional and label-free imaging of human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). The robotic system can accurately determine the dynamic height changes in the cells’ contraction and resting phases, microinject drug-treated healthy and diseased iPSC-CMs in their resting phase with constant injection depth across all cells, and deposit a membrane-impermeable dye that solely diffuses between cells through gap junctions for measuring the gap junction diffusion function. The robotic system was applied toward a targeted drug screen to identify gap junction modulators and potential therapeutics for ACM. Five compounds were found to dose-dependently enhance gap junction permeability in cardiomyocytes with <jats:italic>PKP2</jats:italic> knockdown. In addition, PCO 400 (pinacidil) reduced beating irregularity in a mouse model of ACM expressing mutant PKP2 (R735X). These results highlight the utility of the robotic cell manipulation system to efficiently assess gap junction function in a relevant preclinical disease model, thus providing a technique to advance drug discovery for ACM and other gap junction–mediated diseases.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"2 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-10-16DOI: 10.1126/scirobotics.adm7965
Hannes Gamper,Andreas Mueller,Mario Di Castro
{"title":"High-tech guardians: Robotics at the heart of the Future Circular Collider.","authors":"Hannes Gamper,Andreas Mueller,Mario Di Castro","doi":"10.1126/scirobotics.adm7965","DOIUrl":"https://doi.org/10.1126/scirobotics.adm7965","url":null,"abstract":"A holistic robotic concept for inspection, maintenance, and emergency interventions for the Future Circular Collider is presented.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"98 1","pages":"eadm7965"},"PeriodicalIF":25.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-10-16DOI: 10.1126/scirobotics.adn6848
Jiří Ulrich, Martin Stefanec, Fatemeh Rekabi-Bana, Laurenz Alexander Fedotoff, Tomáš Rouček, Bilal Yağız Gündeğer, Mahmood Saadat, Jan Blaha, Jiří Janota, Daniel Nicolas Hofstadler, Kristina Žampachů, Erhan Ege Keyvan, Babür Erdem, Erol Şahin, Hande Alemdar, Ali Emre Turgut, Farshad Arvin, Thomas Schmickl, Tomáš Krajník
{"title":"Autonomous tracking of honey bee behaviors over long-term periods with cooperating robots","authors":"Jiří Ulrich, Martin Stefanec, Fatemeh Rekabi-Bana, Laurenz Alexander Fedotoff, Tomáš Rouček, Bilal Yağız Gündeğer, Mahmood Saadat, Jan Blaha, Jiří Janota, Daniel Nicolas Hofstadler, Kristina Žampachů, Erhan Ege Keyvan, Babür Erdem, Erol Şahin, Hande Alemdar, Ali Emre Turgut, Farshad Arvin, Thomas Schmickl, Tomáš Krajník","doi":"10.1126/scirobotics.adn6848","DOIUrl":"https://doi.org/10.1126/scirobotics.adn6848","url":null,"abstract":"Digital and mechatronic methods, paired with artificial intelligence and machine learning, are transformative technologies in behavioral science and biology. The central element of the most important pollinator species—honey bees—is the colony’s queen. Because honey bee self-regulation is complex and studying queens in their natural colony context is difficult, the behavioral strategies of these organisms have not been widely studied. We created an autonomous robotic observation and behavioral analysis system aimed at continuous observation of the queen and her interactions with worker bees and comb cells, generating behavioral datasets of exceptional length and quality. Key behavioral metrics of the queen and her social embedding within the colony were gathered using our robotic system. Data were collected continuously for 24 hours a day over a period of 30 days, demonstrating our system’s capability to extract key behavioral metrics at microscopic, mesoscopic, and macroscopic system levels. Additionally, interactions among the queen, worker bees, and brood were observed and quantified. Long-term continuous observations performed by the robot yielded large amounts of high-definition video data that are beyond the observation capabilities of humans or stationary cameras. Our robotic system can enable a deeper understanding of the innermost mechanisms of honey bees’ swarm-intelligent self-regulation. Moreover, it offers the possibility to study other social insect colonies, biocoenoses, and ecosystems in an automated manner. Social insects are keystone species in all terrestrial ecosystems; thus, developing a better understanding of their behaviors will be invaluable for the protection and even the restoration of our fragile ecosystems globally.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"24 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-10-16DOI: 10.1126/scirobotics.adm7689
T. Thang Vo-Doan, Victor V. Titov, Michael J. M. Harrap, Stephan Lochner, Andrew D. Straw
{"title":"High-resolution outdoor videography of insects using Fast Lock-On tracking","authors":"T. Thang Vo-Doan, Victor V. Titov, Michael J. M. Harrap, Stephan Lochner, Andrew D. Straw","doi":"10.1126/scirobotics.adm7689","DOIUrl":"https://doi.org/10.1126/scirobotics.adm7689","url":null,"abstract":"Insects have important roles globally in ecology, economy, and health, yet our understanding of their behavior remains limited. Bees, for example, use vision and a tiny brain to find flowers and return home, but understanding how they perform these impressive tasks has been hampered by limitations in recording technology. Here, we present Fast Lock-On (FLO) tracking. This method moves an image sensor to remain focused on a retroreflective marker affixed to an insect. Using paraxial infrared illumination, simple image processing can localize the sensor location of the insect in a few milliseconds. When coupled with a feedback system to steer a high-magnification optical system to remain focused on the insect, a high–spatiotemporal resolution trajectory can be gathered over a large region. As the basis for several robotic systems, we show that FLO is a versatile idea that can be used in combination with other components. We demonstrate that the optical path can be split and used for recording high-speed video. Furthermore, by flying an FLO system on a quadcopter drone, we track a flying honey bee and anticipate tracking insects in the wild over kilometer scales. Such systems have the capability to provide higher-resolution information about insects behaving in natural environments and as such will be helpful in revealing the biomechanical and neuroethological mechanisms used by insects in natural settings.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"4 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-09-25DOI: 10.1126/scirobotics.adr9299
Maheera Bawa, Ritu Raman
{"title":"Taking control: Steering the future of biohybrid robots","authors":"Maheera Bawa, Ritu Raman","doi":"10.1126/scirobotics.adr9299","DOIUrl":"10.1126/scirobotics.adr9299","url":null,"abstract":"<div >Innovations in control mechanisms for muscle-powered robots are advancing the sophistication of biohybrid machines.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Science RoboticsPub Date : 2024-09-25DOI: 10.1126/scirobotics.ads4127
Nicole W. Xu
{"title":"Float like a butterfly, swim like a biohybrid neuromuscular robot","authors":"Nicole W. Xu","doi":"10.1126/scirobotics.ads4127","DOIUrl":"10.1126/scirobotics.ads4127","url":null,"abstract":"<div >A butterfly-like robot swims using an electronic device to stimulate human-derived motor neurons and cardiac muscle cells.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}