Xiaoxue Chen , Bo Yang , Zhi Pang , Peng Zhou , Guang Fu
{"title":"Coupled optimization of task sequence and hoist scheduling for electroplating production lines based on an improved salp swarm algorithm","authors":"Xiaoxue Chen , Bo Yang , Zhi Pang , Peng Zhou , Guang Fu","doi":"10.1016/j.cirpj.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.07.002","url":null,"abstract":"<div><p>Automatic electroplating production lines have been widely used in electronics industries to reduce the labour intensity and improve the production efficiency. In the multi-variety and low-volume electroplating production, it is known that the task loading sequence and hoist scheduling are coupled with each other, and they codetermine the production efficiency, while all the existing scheduling methods consider them separately, and thus the optimal production schemes become unavailable. Therefore, this paper develops a Task sequence-Hoist scheduling Coupled Optimization (THCO) model which simultaneously considers the requirements and practical constrains of task sequence and hoist scheduling, having an optimization objective of minimizing the maximum completion time. For this model, a double-layer code is developed and an Improved Salp Swarm Algorithm (ISSA) is developed by introducing three improvement strategies: the random spare strategy which is used to increase the population diversity, the nonlinear adaptive weight strategy which is used to balance the exploration and exploitation capacities, and a golden sine algorithm which is used to improve the convergence rate. Experiments based on 23 benchmark functions are then conducted. The obtained results show that ISSA has better convergence and solving quality than existing algorithms. Furthermore, several production cases prove that THCO can generate production schemes that better meet the requirements of production lines.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 34-47"},"PeriodicalIF":4.6,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyong Mao , Yi Chen , Tao Ma , Juntong Guo , Xing Yuan , Nan Jiang , Yanyan Xu , Lei Zhang , Xiaowei Tang , Yili Peng
{"title":"Output-only complete mode shape identification of milling robot body structures using a limited number of current sensors","authors":"Xinyong Mao , Yi Chen , Tao Ma , Juntong Guo , Xing Yuan , Nan Jiang , Yanyan Xu , Lei Zhang , Xiaowei Tang , Yili Peng","doi":"10.1016/j.cirpj.2024.06.014","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.014","url":null,"abstract":"<div><p>Milling robots have the advantage of large workspace and high flexibility compared to machine tools, and are more suitable for machining large and complex surfaces. However, the stiffness of robots is significantly lower than that of machine tools, and they are more prone to chattering. Compared to machine tools, robots mainly occur mode coupling chatter. Analyzing chatter in robots is a great challenge due to the highly flexible and pose-dependent position of the robotic arm. Mode coupling chatter is caused by the most flexible and dominant structural modes of the robot milling system. Available methods are unable to identify the structural modal parameters of a milling robot at all poses in the actual working state. This paper proposes a modal analysis method for robots, which can realize the automatic traversal of the pose of the milling robot and the automatic identification of modal parameters. This paper analyzes the robot multi-joint flexibility characteristics, spatial structure characteristics, and machining vibration characteristics, correlates the joint motor control system and current power characteristics, finds the correlation between the current information and the vibration information, and identifies the modal frequency through the current signals, and realizes the modal frequency identification in the entire workspace. This method is capable of output-only complete mode shape identification, can quickly analyze the main vibration modes, and is of great significance for the study of robot milling chattering.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 48-66"},"PeriodicalIF":4.6,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soni Kesarwani , Narayana Yuvaraj, Mahendra Singh Niranjan
{"title":"Impact of depositional direction and current on microstructure and mechanical properties of the bimetallic wall of ER5356/ER4043 fabricated by cold metal transfer based wire arc additive manufacturing","authors":"Soni Kesarwani , Narayana Yuvaraj, Mahendra Singh Niranjan","doi":"10.1016/j.cirpj.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.013","url":null,"abstract":"<div><p>Wire arc additive manufacturing (WAAM) is increasingly gaining attraction from researchers and industries worldwide due to its low cost and the ability to produce intricate parts in a shorter time. In this study, the bimetallic wall of aluminium alloys (ER5356/ER4043) is fabricated by cold metal transfer based WAAM technique using two deposition directions (unidirectional and bidirectional) and three current combinations (115 A/90 A, 120 A/95 A, 125 A/100 A). The effect of deposition direction and current on microstructure evolution, mechanical properties, and residual stress has been investigated. Experimental results displayed better properties in bi-directional wall build at a current combination of 115 A/90 A. This is confirmed by optical microstructure as well as field emission scanning electron microscopy, which shows equiaxed grains on the ER4043 layer, fine grains on the ER5356 layer, and columnar-fine grains at the interface of the bi-directional wall while discontinuous dendritic grains is displayed in ER5356 layer of unidirectional wall. Energy dispersive spectroscopy analysis indicates a main difference in weight percentage for Si and Mg contents at the interface layer of the bidirectional wall than the unidirectional wall, with X-ray diffraction analysis specifying the intermetallic compounds like α-Al, Al<sub>12</sub>Mg<sub>17</sub>, Mg<sub>2</sub>Si, AlMg, and Al<sub>3.21</sub>Si<sub>0.47</sub> in both depositional directions. Tensile strength at the interface layer of the bi-directional wall surpasses the tensile strength of the unidirectional wall's interface layer, with fracture morphology indicating ductile fracture in all specimens. The microhardness test reveals an increase in hardness in the transverse direction at the current combination of 115 A/90 A and also in the bidirectional deposition wall compared to the unidirectional wall. Bidirectional deposition has generated less residual stress than unidirectional walls.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 17-33"},"PeriodicalIF":4.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of acoustic cavitation streaming: A study on surface finishing of additively manufactured components","authors":"Saikat Medya , S.H. Yeo","doi":"10.1016/j.cirpj.2024.06.015","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.015","url":null,"abstract":"<div><p>Due to the poor surface characteristics of additively manufactured parts, the necessity for post-process surface enhancement is crucial. Among the prevalent post-processing techniques, the acoustic cavitation-based surface finishing technique has recently emerged. Despite a considerable amount of focused research on the material removal mechanisms of this technique, less attention has been devoted to addressing its limitations associated with enhancing the process capability towards achieving a better surface finish. The driving force behind the acoustic cavitation technique is the bubble implosion through cavitation streaming, and the cessation of the acoustic cavitation streaming beyond a certain length is the main limitation. It has restrained the process capability towards finishing both external and internal surfaces. Hence, this research aims to unravel novel ways of employing the acoustic cavitation-generating parameters and achieving better-quality surface finishing of additively manufactured (AM) components. A study has been conducted on different AM materials, including Inconel 625 and aluminum alloy, by introducing various methods associated with acoustic amplitude, working mediums, temperature, and external vibration. The results reveal a significant reduction in average surface roughness for both materials. The topographical and morphological observations confirm the qualitative improvement on the surfaces. In addition, the conical bubble structures that frame the acoustic cavitation streaming are elucidated by implementing high-speed imaging techniques, and their enhancement at different parametric conditions is delineated. Henceforth, the findings suggest a notable insight into the potential of the employed approaches in enhancing the acoustic cavitation streaming for achieving a better surface finish of AM components.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 1-16"},"PeriodicalIF":4.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosario Davide D’Amico , Arkopaul Sarkar , Mohamed Hedi Karray , Sri Addepalli , John Ahmet Erkoyuncu
{"title":"Knowledge transfer in Digital Twins: The methodology to develop Cognitive Digital Twins","authors":"Rosario Davide D’Amico , Arkopaul Sarkar , Mohamed Hedi Karray , Sri Addepalli , John Ahmet Erkoyuncu","doi":"10.1016/j.cirpj.2024.06.007","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.007","url":null,"abstract":"<div><p>In the realm of Digital Twins (DTs), industry experts have emphasised the pivotal concept of the Federation of Twins, envisioning seamless collaboration across sectors driven by shared semantics. In response to this challenge, the Cognitive Digital Twin (CDT) integrates the DT framework with formal semantics, specifically ontologies. This paper introduces a comprehensive five-step methodology for CDT development. Furthermore, it becomes possible to incorporate human expertise into the DT ecosystem by adopting an ontological approach. The CDT enhances DT services with advanced reasoning capabilities, leading to a profound semantic enrichment of the data. The presented methodology has been validated using a use case where the CDT is employed to detect malfunctions, significantly reducing manual intervention. This paper advocates for the adoption of CDTs, which represent a harmonious fusion of formal semantics and human expertise, enhancing system efficiency and operational performance.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 366-385"},"PeriodicalIF":4.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755581724000932/pdfft?md5=4763b10e338c48e1800bad67ff75a44d&pid=1-s2.0-S1755581724000932-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of material behavior for additively manufactured 17-4 PH stainless steel produced by fused filament fabrication","authors":"Saba Molazadeh, Ali Hosseini","doi":"10.1016/j.cirpj.2024.06.011","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.011","url":null,"abstract":"<div><p>This paper proposes a model to predict the tensile characteristics of metal fused filament fabricated (MFFF) components. The proposed model consists of mathematical, experimental, and finite element (FE) models. The mathematical model was constructed based on the composite laminate theory and was combined with experiments for basic layup of 0° and 90° raster angle to describe the behavior of MFFF parts. The FE model was built to simulate the behavior of MFFF parts in a virtual environment and its validity was verified using independent experiments for a more common layup of +45°/−45°.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 341-365"},"PeriodicalIF":4.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175558172400097X/pdfft?md5=4131ca63fb2e9dfab1ec88824faeee39&pid=1-s2.0-S175558172400097X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benzhao Wu , Kang Wu , Ziliu Xiong , Junfeng Xiao , Yong Sun
{"title":"Coherent Point Drift derived algorithm enhanced with locality preserving matching for point cloud registration of roll formed parts","authors":"Benzhao Wu , Kang Wu , Ziliu Xiong , Junfeng Xiao , Yong Sun","doi":"10.1016/j.cirpj.2024.05.011","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.05.011","url":null,"abstract":"<div><p>Due to severe deformation, noise, and occlusion, the registration problem of non-rigid point sets in rolling formed metal workpieces poses challenges, and the demand for real-time data storage and registration during the rolling forming process makes this problem even more prominent. This paper proposes an enhanced nonrigid point set registration algorithm based on the Coherent Point Drift (CPD) framework, introducing novel methods to improve accuracy and efficiency. A refined local distance calculation method combining spatial distance has been proposed to improve matching accuracy. In contrast, an optimized shape context method introduces a new driving force criterion to expedite initial registration and reduce subsequent errors. Leveraging the Expectation-Maximization (EM) algorithm, the approach iteratively solves point correspondences, demonstrating robustness in handling complex scenarios like non-rigid deformation and noise. Experimental validation using real production datasets shows superior accuracy and efficiency over classical algorithms, showcasing a practical solution for non-rigid point set registration challenges in roll forming applications.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 330-340"},"PeriodicalIF":4.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative study on the process, anisotropy, and mechanical performance of laser powder bed fusion fabricated truss-lattice structures with different unit cell designs","authors":"Jiankai Yang, Weidong Li","doi":"10.1016/j.cirpj.2024.06.009","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.009","url":null,"abstract":"<div><p>Lattice structures to fabricate bone implants can avoid stress-shielding effects and promote bone-in-growth. However, the performance of bones varies in different body parts, creating a barrier to manufacture an appropriate lattice structure for bone implant. Here, the formability, anisotropy, energy absorption abilities, stress distribution, and deformation mode of the laser powder bed fusion (LPBF) processed face-centered cubic (FCC), Octet, and Kelvin lattice structures were systematically compared through experiments and finite element analysis. The results show that the Kelvin lattice structure had the optimal comprehensive mechanical performance. This research has potential value for the design and manufacturing of specific bone implants.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 307-317"},"PeriodicalIF":4.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wang, Xue Bai, Ting-Yi Yang, Li Li, Xin-Yu Zhang
{"title":"Research on surface corrosion resistance of sintered NdFeB by rotating transverse magnetic field assisted EDM-milling","authors":"Wei Wang, Xue Bai, Ting-Yi Yang, Li Li, Xin-Yu Zhang","doi":"10.1016/j.cirpj.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.010","url":null,"abstract":"<div><p>Sintered NdFeB, owing to its outstanding magnetic properties, finds widespread applications in diverse fields. However, its susceptibility to corrosion limits its utility. To enhance its corrosion resistance, a rotating transverse magnetic field is incorporated into the electrical discharge machining milling (EDM-M) process. Comparative experiments are conducted on sintered NdFeB by EDM-M, fixed transverse magnetic field assisted EDM-M(FTMEDM-M), and rotating transverse magnetic field assisted EDM-M(RTMEDM-M). Results indicate that the RTMEDM-M process yields the least surface cracks, the least \"caves\", and the recast layer which is the most uniform and the most continuous. Its impedance value is the highest, self-corrosion potential is the largest, and self-corrosion current density is the lowest according to its electrochemical impedance spectroscopy (EIS). In addition, its mass loss per unit area is the least, with the latest and the weakest reaction of chemical corrosion of the workpiece surface.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 318-329"},"PeriodicalIF":4.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}