Aging CellPub Date : 2024-10-21DOI: 10.1111/acel.14384
Lisa Götz, Uwe Rueckschloss, Andreas Reimer, Heike Bömmel, Andreas Beilhack, Süleyman Ergün, Florian Kleefeldt
{"title":"Vascular inflammaging: Endothelial CEACAM1 expression is upregulated by TNF-α via independent activation of NF-κB and β-catenin signaling","authors":"Lisa Götz, Uwe Rueckschloss, Andreas Reimer, Heike Bömmel, Andreas Beilhack, Süleyman Ergün, Florian Kleefeldt","doi":"10.1111/acel.14384","DOIUrl":"10.1111/acel.14384","url":null,"abstract":"<p>Chronic inflammation with progressive age, called inflammaging, contributes to the pathogenesis of cardiovascular diseases. Previously, we have shown increased vascular expression of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in aged mice and humans, presumably via mutual upregulation with the pro-inflammatory cytokine TNF-α. CEACAM1 is critical for aging-associated vascular alterations like endothelial dysfunction, fibrosis, oxidative stress, and sustained inflammation and can be regarded as a main contributor to vascular inflammaging. This study was conducted to elucidate the mechanisms underlying endothelial CEACAM1 upregulation by TNF-α in detail. Using wildtype (WT) and TNF-α knockout (<i>Tnf</i><sup><i>−</i>/−</sup>) mice, we confirmed that the aging-related upregulation of endothelial CEACAM1 critically depends on TNF-α. The underlying mechanisms were analyzed in an endothelial cell culture model. TNF-α time-dependently upregulated CEACAM1 in vitro. In pharmacological experiments, we identified an early NF-κB- and a delayed β-catenin-mediated response. Involvement of β-catenin was further substantiated by siRNA-mediated knockdown of the β-catenin-targeted transcription factor TCF4. Both signaling pathways acted independent from each other. Elucidating the delayed response, co-immunoprecipitation analysis revealed release of β-catenin from adherens junctions by TNF-α. Finally, TNF-α activated Akt kinase by increasing its Ser<sup>473</sup> phosphorylation. Consequently, Akt kinase facilitated β-catenin signaling by inhibiting its degradation via phosphorylation of GSK3β at Ser<sup>9</sup> and by increased phosphorylation of β-catenin at Ser<sup>552</sup> that augments its transcriptional activity. Taken together, our study provides novel mechanistic insights into the aging-related, inflammation-mediated endothelial upregulation of CEACAM1. Beyond the pathogenesis of cardiovascular diseases, these findings may be significant to all fields of inflammaging.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 2","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-18DOI: 10.1111/acel.14375
Sahar Vakili, Elizabeth K. Izydore, Leonhard Losert, Wayne A. Cabral, Urraca L. Tavarez, Kevin Shores, Huijing Xue, Michael R. Erdos, George A. Truskey, Francis S. Collins, Kan Cao
{"title":"Angiopoietin-2 reverses endothelial cell dysfunction in progeria vasculature","authors":"Sahar Vakili, Elizabeth K. Izydore, Leonhard Losert, Wayne A. Cabral, Urraca L. Tavarez, Kevin Shores, Huijing Xue, Michael R. Erdos, George A. Truskey, Francis S. Collins, Kan Cao","doi":"10.1111/acel.14375","DOIUrl":"10.1111/acel.14375","url":null,"abstract":"<p>Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder in children caused by a point mutation in the lamin A gene, resulting in a toxic form of lamin A called progerin. Accelerated atherosclerosis leading to heart attack and stroke are the major causes of death in these patients. Endothelial cell (EC) dysfunction contributes to the pathogenesis of HGPS related cardiovascular diseases (CVD). Endothelial cell–cell communications are important in the development of the vasculature, and their disruptions contribute to cardiovascular pathology. However, it is unclear how progerin interferes with such communications that lead to vascular dysfunction. An antibody array screening of healthy and HGPS patient EC secretomes identified Angiopoietin-2 (Ang2) as a down-regulated signaling molecule in HGPS ECs. A similar down-regulation of <i>Ang2</i> mRNA and protein was detected in the aortas from an HGPS mouse model. Addition of Ang2 to HGPS ECs rescues vasculogenesis, normalizes endothelial cell migration and gene expression, and restores nitric oxide bioavailability through eNOS activation. Furthermore, Ang2 addition reverses unfavorable paracrine effects of HGPS ECs on vascular smooth muscle cells. Lastly, by utilizing adenine base editor (ABE)-corrected HGPS ECs and progerin-expressing HUVECs, we demonstrated a negative correlation between progerin and Ang2 expression. Lastly, our results indicated that Ang2 exerts its beneficial effect in ECs through Tie2 receptor binding, activating an Akt-mediated pathway. Together, these results provide molecular insights into EC dysfunction in HGPS and suggest that Ang2 treatment has potential therapeutic effects in HGPS-related CVD.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 2","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14375","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-18DOI: 10.1111/acel.14383
{"title":"RETRACTION: 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling","authors":"","doi":"10.1111/acel.14383","DOIUrl":"10.1111/acel.14383","url":null,"abstract":"<p><b>RETRACTION</b>: Chen, L., Yang, R., Qiao, W., Zhang, W., Chen, J., Mao, L., Goltzman, D., Miao, D. (2019). 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. <i>Aging Cell</i>, 18(3), e12951. https://doi.org/10.1111/acel.12951</p><p>The above article, published online on 24 March 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between; the journal Editor-in-Chief, Monty Montano; The Anatomical Society; and John Wiley & Sons Ltd. The retraction has been agreed due to duplications observed between elements of Figures 1h and 1j; 5d and 5f; 3a and 6j; and Supplemental Figures 4c and 4e.</p><p>The authors acknowledged their errors in figure management, which led to the duplications observed between Figures 3a and 6j, as well as between S4c and S4e. They also admitted to copying and pasting small areas from figure S4e into the same image for aesthetic purposes. Additionally, they admitted to editing Figure 4d (ChIP gel image) to reduce noise and enhance the clarity of the bands shown. The authors provided some data and an explanation for the similarities observed between Figures 1h and 1j; and Figures 5d and 5f. However, their explanation was not sufficient. Due to the extent of the identified issues, the editors have lost confidence in the data presented. The authors disagree with the retraction.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"23 11","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-18DOI: 10.1111/acel.14369
Steven K. Malin, Daniel J. Battillo, Michal S. Beeri, Maja Mustapic, Francheska Delgado-Peraza, Dimitrios Kapogiannis
{"title":"Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes","authors":"Steven K. Malin, Daniel J. Battillo, Michal S. Beeri, Maja Mustapic, Francheska Delgado-Peraza, Dimitrios Kapogiannis","doi":"10.1111/acel.14369","DOIUrl":"10.1111/acel.14369","url":null,"abstract":"<p>Adults with prediabetes are at risk for Alzheimer's Disease and Related Dementia (ADRD). While exercise may lower ADRD risk, the exact mechanism is unclear. We tested the hypothesis that short-term exercise would raise neuronal insulin signaling and pro-BDNF in neuronal extracellular vesicles (nEVs) in prediabetes. Twenty-one older adults (18F, 60.0 ± 8.6 yrs.; BMI: 33.5 ± 1.1 kg/m<sup>2</sup>) with prediabetes (ADA criteria; 75 g OGTT) were randomized to 12 supervised work-matched continuous (<i>n</i> = 13, 70% HR<sub>peak</sub>) or interval (<i>n</i> = 8, 90% HR<sub>peak</sub> and 50% HR<sub>peak</sub> for 3 min each) sessions over 2-wks for 60 min/d. Aerobic fitness (VO<sub>2</sub>peak) and body weight were assessed. After an overnight fast, whole-body glucose tolerance (total area under the curve, tAUC) and insulin sensitivity (SIis) were determined from a 120 min 75 g OGTT. nEVs were acquired from 0 and 60 min time-points of the OGTT, and levels of insulin signaling proteins (i.e., p-IRS-1, total−/p-Akt, pERK1/2, pJNK1/2, and pp38) and pro-BNDF were measured. OGTT stimulatory effects were calculated from protein differences (i.e., OGTT 60-0 min). Adults were collapsed into a single group as exercise intensity did not affect nEV outcomes. Exercise raised VO<sub>2</sub>peak (+1.4 ± 2.0 mL/kg/min, <i>p</i> = 0.008) and insulin sensitivity (<i>p</i> = 0.01) as well as decreased weight (−0.4 ± 0.9 kg, <i>p</i> = 0.04) and whole-body glucose tAUC<sub>120min</sub> (<i>p</i> = 0.02). Training lowered 0-min pro-BDNF (704.1 ± 1019.0 vs. 414.5 ± 533.5, <i>p</i> = 0.04) and increased OGTT-stimulated tAkt (−51.8 ± 147.2 vs. 95 ± 204.5 a.u., <i>p</i> = 0.01), which was paralleled by reduced pAkt/tAkt at 60 min of the OGTT (1.3 ± 0.2 vs. 1.2 ± 0.1 a.u., <i>p</i> = 0.04). Thus, 2 weeks of exercise altered neuronal insulin signaling responses to glucose ingestion and lowered pro-BNDF among adults with prediabetes, thereby potentially lowering ADRD risk.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-17DOI: 10.1111/acel.14373
Priya Subramanian, Souraya Sayegh, Phatthamon Laphanuwat, Oliver P. Devine, Carlos Henrique Fantecelle, Justyna Sikora, Emma S. Chambers, Sophia N. Karagiannis, Daniel C. O. Gomes, Anjana Kulkarni, Malcolm H. A. Rustin, Katie E. Lacy, Arne N. Akbar
{"title":"Multiple outcomes of the germline p16INK4a mutation affecting senescence and immunity in human skin","authors":"Priya Subramanian, Souraya Sayegh, Phatthamon Laphanuwat, Oliver P. Devine, Carlos Henrique Fantecelle, Justyna Sikora, Emma S. Chambers, Sophia N. Karagiannis, Daniel C. O. Gomes, Anjana Kulkarni, Malcolm H. A. Rustin, Katie E. Lacy, Arne N. Akbar","doi":"10.1111/acel.14373","DOIUrl":"10.1111/acel.14373","url":null,"abstract":"<p>The integrated behaviour of multiple senescent cell types within a single human tissue leading to the development of malignancy is unclear. Patients with Familial Melanoma Syndrome (FMS) have heterozygous germline defects in the <i>CDKN2A</i> gene coding for the cyclin inhibitor p16<sup>INK4a</sup>. Melanocytes within skin biopsies from FMS patients express significantly less p16<sup>INK4a</sup> but express higher levels of the DNA-damage protein 𝛾H2AX a than fibroblastic cells. However, patient fibroblasts also exhibit defects since senescent cells do not increase in the skin during ageing and fibroblasts isolated from the skin of patients have increased replicative capacity compared to control fibroblasts in vitro, culminating in abnormal nuclear morphology. Patient derived fibroblasts also secreted less SASP than control cells. Predisposition of FMS patients to melanoma may therefore result from integrated dysregulation of senescence in multiple cell types in vivo. The inherently greater levels of DNA damage and the overdependence of melanocytes on p16 for cell cycle inhibition after DNA damage makes them exquisitely susceptible to malignant transformation. This may be accentuated by senescence-related defects in fibroblasts, in particular reduced SASP secretion that hinders recruitment of T cells in the steady state and thus reduces cutaneous immunosurveillance in vivo.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 2","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14373","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ketogenic β-hydroxybutyrate regulates β-hydroxybutyrylation of TCA cycle-associated enzymes and attenuates disease-associated pathologies in Alzheimer's mice","authors":"Wanhong Han, Bingchang Zhang, Wenpeng Zhao, Wentao Zhao, Jiawei He, Xiansheng Qiu, Liang Zhang, Xiuyan Wang, Yong Wang, Hanwen Lu, Yaya Zhang, Yuanyuan Xie, Yanyan Geng, Wujie Zhao, Qionghui Huang, Yun-wu Zhang, Zhanxiang Wang","doi":"10.1111/acel.14368","DOIUrl":"10.1111/acel.14368","url":null,"abstract":"<p>Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification that has recently been found to regulate protein functions. However, whether and how protein Kbhb modification participates in Alzheimer's disease (AD) remains unknown. Herein, we carried out 4D label-free β-hydroxybutylation quantitative proteomics using brain samples of 8-month-old and 2-month-old APP/PS1 AD model mice and wild-type (WT) controls. We identified a series of tricarboxylic acid (TCA) cycle-associated enzymes including citrate synthase (CS) and succinate-CoA ligase subunit alpha (SUCLG1), whose Kbhb modifications were decreased in APP/PS1 mice at pathological stages. Sodium β-hydroxybutyrate (Na-β-OHB) treatment markedly increased Kbhb modifications of CS and SUCLG1 and their enzymatic activities, leading to elevated ATP production. We further found that Kbhb modifications at lysine 393 site in CS and at lysine 81 site in SUCLG1 were crucial for their enzymatic activities. Finally, we found that β-OHB levels were decreased in the brain of APP/PS1 mice at pathological stages. While ketogenic diet not only significantly increased β-OHB levels, Kbhb modifications and enzymatic activities of CS and SUCLG1, and ATP production, but also dramatically attenuated β-amyloid plaque pathologies and microgliosis in APP/PS1 mice. Together, our findings indicate the importance of protein Kbhb modification for maintaining normal TCA cycle and ATP production and provide a novel molecular mechanism underlying the beneficial effects of ketogenic diet on energy metabolism and AD intervention.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-16DOI: 10.1111/acel.14366
Min Jia, Gui-zhou Li, Jiang Chen, Xiao-hui Tang, Yan-yu Zang, Guo-lin Yang, Yun Stone Shi, Daqing Ma, Mu-huo Ji, Jian-jun Yang
{"title":"Hippocampal Nogo66-NgR1 signaling activation restricts postsynaptic assembly in aged mice with postoperative neurocognitive disorders","authors":"Min Jia, Gui-zhou Li, Jiang Chen, Xiao-hui Tang, Yan-yu Zang, Guo-lin Yang, Yun Stone Shi, Daqing Ma, Mu-huo Ji, Jian-jun Yang","doi":"10.1111/acel.14366","DOIUrl":"10.1111/acel.14366","url":null,"abstract":"<p>Postoperative neurocognitive disorders (pNCD) are a common neurological complication, especially in elderly following anesthesia and surgery. Yet, the underlying mechanisms of pNCD remain elusive. This study aimed to investigate the molecular mechanisms that compromise synaptic metaplasticity in pNCD development with a focus on the involvement of Nogo-66 receptor 1 (NgR1) in the pathogenesis of pNCD in aged mice. Aged mice subjected to anesthesia and laparotomy surgery exhibited anxiety-like behavior and contextual fear memory impairment. Moreover, the procedure significantly increased NogoA and NgR1 expressions, particularly in the hippocampal CA1 and CA3 regions. This increase led to the depolymerization of F-actin, attributed to the activation of the RhoA-GTPase, resulting in a reduction of dendritic spines and changes in their morphology. Additionally, these changes hindered the efficient postsynaptic delivery of the subunit GluA1 and GluA2 of AMPA receptors (AMPARs), consequently diminishing excitatory neurotransmission in the hippocampus. Importantly, administering the competitive NgR1 antagonist peptide NEP1-40 (Nogo-A extracellular peptide residues 1–40 amino acids of Nogo-66) and Fasudil (a Rho-kinase inhibitor) effectively mitigated synaptic impairments and reversed neurocognitive deficits in aged mice following anesthesia and surgery. Our work indicates that high hippocampal Nogo66-NgR1 signaling disrupts postsynaptic AMPA receptor surface delivery due to F-actin depolymerization in the pathophysiology of pNCD.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-16DOI: 10.1111/acel.14355
Nathalie Launay, Maria Espinosa-Alcantud, Edgard Verdura, Gorka Fernández-Eulate, Jon Ondaro, Pablo Iruzubieta, Maria Marsal, Agatha Schlüter, Montserrat Ruiz, Stephane Fourcade, Agustí Rodríguez-Palmero, Miren Zulaica, Andone Sistiaga, Garazi Labayru, Pablo Loza-Alvarez, Alejandro Vaquero, Adolfo Lopez de Munain, Aurora Pujol
{"title":"Altered tubulin detyrosination due to SVBP malfunction induces cytokinesis failure and senescence, underlying a complex hereditary spastic paraplegia","authors":"Nathalie Launay, Maria Espinosa-Alcantud, Edgard Verdura, Gorka Fernández-Eulate, Jon Ondaro, Pablo Iruzubieta, Maria Marsal, Agatha Schlüter, Montserrat Ruiz, Stephane Fourcade, Agustí Rodríguez-Palmero, Miren Zulaica, Andone Sistiaga, Garazi Labayru, Pablo Loza-Alvarez, Alejandro Vaquero, Adolfo Lopez de Munain, Aurora Pujol","doi":"10.1111/acel.14355","DOIUrl":"10.1111/acel.14355","url":null,"abstract":"<p>Senescence, marked by permanent cell cycle arrest may contribute to the decline in regenerative potential and neuronal function, thereby promoting neurodegenerative disorders. In this study, we employed whole exome sequencing to identify a previously unreported biallelic missense variant in SVBP (p.Leu49Pro) in six patients from three unrelated families. These affected individuals present with a complex hereditary spastic paraplegia (HSP), peripheral neuropathy, verbal apraxia, and intellectual disability, exhibiting a milder phenotype compared to patients with nonsense SVBP mutations described previously. Consistent with SVBP's primary role as a chaperone necessary for VASH-mediated tubulin detyrosination, both patient fibroblasts with the p.Leu49Pro mutation, and HeLa cells harboring an SVBP knockdown exhibit microtubule dynamic instability and alterations in pericentriolar material (PCM) component trafficking and centrosome cohesion. In patient fibroblasts, structural abnormalities in the centrosome trigger mitotic errors and cellular senescence. Notably, premature senescence characterized by elevated levels of p16INK4, was also observed in patient peripheral blood mononuclear cells (PBMCs). Taken together, our findings underscore the critical role of SVBP in the development and maintenance of the central nervous system, providing novel insights associating cytokinesis failure with cortical motor neuron disease and intellectual disability.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging CellPub Date : 2024-10-16DOI: 10.1111/acel.14374
Weidong Zhang, Fan Ding, Xing Rong, Qinghua Ren, Tomoka Hasegawa, Hongrui Liu, Minqi Li
{"title":"Aβ -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer's diseases","authors":"Weidong Zhang, Fan Ding, Xing Rong, Qinghua Ren, Tomoka Hasegawa, Hongrui Liu, Minqi Li","doi":"10.1111/acel.14374","DOIUrl":"10.1111/acel.14374","url":null,"abstract":"<p>Alzheimer's diseases (AD) patients suffer from more serious bone loss than cognitively normal subjects at the same age. Type H blood vessels were tightly associated with bone homeostasis. However, few studies have concentrated on bone vascular alteration and its role in AD-related bone loss. In this study, APP/PS1 mice (4- and 8-month-old) and age-matched wild-type mice were used to assess the bone vascular alteration and its role in AD-related bone loss. Transmission electron microscopy, immunofluorescence staining and iGPS 1.0 software database were utilized to investigate the molecular mechanism. Mitochondrial division inhibitor (Mdivi-1) and GSK-3β inhibitor (LiCl) were used to rescue type H blood vessels injury and verify the molecular mechanism. Our results revealed that APP/PS1 mice exhibited more serious bone blood vessels injury and bone loss during ageing. The bone blood vessel injury, especially in type H blood vessels, was accompanied by impaired vascularized osteogenesis in APP/PS1 mice. Further exploration indicated that beta-amyloid (Aβ) promoted the apoptosis of vascular endothelial cells (ECs) and resulted in type H blood vessels injury. Mechanistically, Aβ-induced excessive mitochondrial fission was found to be essential for the apoptosis of ECs. GSK-3β was identified as a key regulatory target of Aβ-induced excessive mitochondrial fission and bone loss. The findings delineated that Aβ-induced excessive mitochondrial fission drives type H blood vessels injury, leading to aggravate bone loss in APP/PS1 mice and GSK-3β inhibitor emerges as a potential therapeutic strategy.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 2","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The translation initiation factor eIF2α regulates lipid homeostasis and metabolic aging","authors":"Haipeng Huang, Yilie Liao, Ning Li, Xingfan Qu, Chaocan Li, Jiaqi Hou","doi":"10.1111/acel.14348","DOIUrl":"10.1111/acel.14348","url":null,"abstract":"<p>Aging is usually accompanied by excessive body fat gain, leading to increased susceptibility to comorbidities. This study aimed to explore an unexpected function for the eukaryotic initiation factor-2α (eIF2α) during aging. Reducing the eIF2α dose led to a reconfiguration of the metabolic equilibrium, promoting catabolism, facilitating lipolysis, and decreasing body fat accumulation while maintaining healthy glucose and lipid metabolism during aging. Specifically, eIF2α enhanced the expression of distinct messenger RNAs encoding mitochondrial electron transport chain proteins at the translation level. The mitochondrial respiration increased in eIF2α heterozygotes, even during aging. Deceleration of translation was demonstrated as a conserved mechanism for promoting longevity across various species. Our findings demonstrated that the restriction of translation by reducing eIF2α expression could fend off multiple tissue damage and improve metabolic homeostasis during aging. Hence, eIF2α was a crucial target for benefiting mammalian aging achieving delayed mammalian aging.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}