Meera M. Krishna, Swapnil G. Waghmare, Ariel L. Franitza, Emily C. Maccoux, Lezi E
{"title":"表皮胶原蛋白减少驱动感觉神经元选择性老化。","authors":"Meera M. Krishna, Swapnil G. Waghmare, Ariel L. Franitza, Emily C. Maccoux, Lezi E","doi":"10.1111/acel.14459","DOIUrl":null,"url":null,"abstract":"<p>Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in <i>Caenorhabditis elegans</i> as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits. Our study reveals that decreased collagen expression, a common age-related phenomenon across species, triggers this process. Specifically, loss-of-function in <i>dpy-5</i> or <i>col-120</i>, genes encoding cuticular collagens secreted to the epidermal apical surface, induces early-onset excessive dendritic branching and proprioceptive deficits. Adulthood-specific overexpression of <i>dpy-5</i> or <i>col-120</i> mitigates excessive branching in aged animals without extending lifespan, highlighting their specific roles in promoting neuronal health span. Notably, collagen reduction specifically drives excessive branching in select sensory neuron subclasses but does not contribute to PVD dendritic beading, another aging-associated neurodegenerative phenotype associated with distinct mechanosensitive dysfunction. Lastly, we identify that <i>rig-3</i>, an immunoglobulin superfamily member expressed in interneurons, acts upstream of collagen genes to maintain PVD dendritic homeostasis during aging, with collagen's regulatory role requiring <i>daf-16</i>/FOXO. These findings reveal that age-related collagen reduction cues neuronal aging independently of collagen's traditional structural support function, possibly involving bi-directional communication processes between neurons and non-neuronal cells. Our study also offers new insights into understanding selective neuron vulnerability in aging, emphasizing the importance of multi-tissue strategies to address the complexities of neuronal aging.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 4","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14459","citationCount":"0","resultStr":"{\"title\":\"Epidermal Collagen Reduction Drives Selective Aspects of Aging in Sensory Neurons\",\"authors\":\"Meera M. Krishna, Swapnil G. Waghmare, Ariel L. Franitza, Emily C. Maccoux, Lezi E\",\"doi\":\"10.1111/acel.14459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in <i>Caenorhabditis elegans</i> as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits. Our study reveals that decreased collagen expression, a common age-related phenomenon across species, triggers this process. Specifically, loss-of-function in <i>dpy-5</i> or <i>col-120</i>, genes encoding cuticular collagens secreted to the epidermal apical surface, induces early-onset excessive dendritic branching and proprioceptive deficits. Adulthood-specific overexpression of <i>dpy-5</i> or <i>col-120</i> mitigates excessive branching in aged animals without extending lifespan, highlighting their specific roles in promoting neuronal health span. Notably, collagen reduction specifically drives excessive branching in select sensory neuron subclasses but does not contribute to PVD dendritic beading, another aging-associated neurodegenerative phenotype associated with distinct mechanosensitive dysfunction. Lastly, we identify that <i>rig-3</i>, an immunoglobulin superfamily member expressed in interneurons, acts upstream of collagen genes to maintain PVD dendritic homeostasis during aging, with collagen's regulatory role requiring <i>daf-16</i>/FOXO. These findings reveal that age-related collagen reduction cues neuronal aging independently of collagen's traditional structural support function, possibly involving bi-directional communication processes between neurons and non-neuronal cells. Our study also offers new insights into understanding selective neuron vulnerability in aging, emphasizing the importance of multi-tissue strategies to address the complexities of neuronal aging.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14459\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14459\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14459","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Epidermal Collagen Reduction Drives Selective Aspects of Aging in Sensory Neurons
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits. Our study reveals that decreased collagen expression, a common age-related phenomenon across species, triggers this process. Specifically, loss-of-function in dpy-5 or col-120, genes encoding cuticular collagens secreted to the epidermal apical surface, induces early-onset excessive dendritic branching and proprioceptive deficits. Adulthood-specific overexpression of dpy-5 or col-120 mitigates excessive branching in aged animals without extending lifespan, highlighting their specific roles in promoting neuronal health span. Notably, collagen reduction specifically drives excessive branching in select sensory neuron subclasses but does not contribute to PVD dendritic beading, another aging-associated neurodegenerative phenotype associated with distinct mechanosensitive dysfunction. Lastly, we identify that rig-3, an immunoglobulin superfamily member expressed in interneurons, acts upstream of collagen genes to maintain PVD dendritic homeostasis during aging, with collagen's regulatory role requiring daf-16/FOXO. These findings reveal that age-related collagen reduction cues neuronal aging independently of collagen's traditional structural support function, possibly involving bi-directional communication processes between neurons and non-neuronal cells. Our study also offers new insights into understanding selective neuron vulnerability in aging, emphasizing the importance of multi-tissue strategies to address the complexities of neuronal aging.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.