{"title":"Intuitionistic Fuzzy Set and Its Application in Corona Covid-19","authors":"A. M. Kozae, M. Shokry, M. Omran","doi":"10.11648/J.ACM.20200905.11","DOIUrl":"https://doi.org/10.11648/J.ACM.20200905.11","url":null,"abstract":"Intuitionistic Fuzzy set (IFS) theory plays an important role in real life and engineering problems. There are many model involving fuzzy matrices to deal with different complicated aspects. Intuitionistic fuzzy set (IFS) is useful in providing a flexible model for developing the uncertainty and vagueness involved in making decisions where the theories of uncertainty are very useful to treat with mathematics that needs to address. In other words, the application of intuitionistic fuzzy sets instead of fuzzy sets means the introduction of another degree of freedom into a set description. Intuitionistic fuzzy set (IFS) called the generalization of fuzzy sets was proposed in K. T. Atanassov. So, we can use it in decision making. We examined the definition of IFS and puts new definitions of IFS (Intuitionistic fuzzy set) in this paper and suggested its implementation in the Corona Covid-19. For several similar real-life cases the suggested approach can be applied.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"888 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90988987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explore the Characteristics of Age, BMI and Blood Composition of Breast Cancer Patients Based on Multivariate Statistical Analysis","authors":"R. Dong","doi":"10.11648/j.acm.20200904.15","DOIUrl":"https://doi.org/10.11648/j.acm.20200904.15","url":null,"abstract":"In this paper, through a series of analysis and testing of breast cancer detection data, the statistical rules of multiple objects and multiple indicators are analyzed in the case of their correlation. First of all, univariate diagnosis and multivariate diagnosis were performed on the data. Among them, when studying the correlation between variables, it was found that HOMA had a clear linear positive correlation with insulin content in blood. It is worth noting that some patients with breast cancer show a high degree of insulin resistance and blood insulin content, which is a feature not found in samples without breast cancer. Then, through single factor analysis of variance, we believe that there were significant differences in blood test conditions, ages, and BMI indicators of samples of different health conditions. Next, the principal component analysis was used to reduce the dimension of the data. In this study, the differences in age, BMI, and blood component content between the two groups with different health conditions can be summarized by these two independent factors. Among them, the absolute value of the MCP-1 (monocyte chemoattractant protein 1) coefficient in the main component 1 is large, reflecting the characteristics of the blood component of the sample; the load values of glucose and leptin in the main component 2 are large, reflecting similar results. Then, assuming the use of m = 3 factor model and the use of maximum likelihood method and principal component method, the original data and factor rotation data are re-analyzed, so that the variables are reduced to 3 factors for analysis. Among them, the maximum likelihood method is used to estimate the factor rotation data. The first factor reflects the insulin resistance factor attributed to insulin and HOMA indicators, and the second factor reflects the body fat and thin factor attributed to BMI and leptin. The third factor reflects the glucose content in the blood. Finally, by setting different misjudgment costs for discriminant analysis, the obtained APER is 0.1638 and EAER is 0.1872. Among them, the probability of discriminating patients with breast cancer from not having breast cancer is 0.09375, which is a low rate of misjudgment and also means the model established in this paper is efficient.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"1 1","pages":"130"},"PeriodicalIF":10.0,"publicationDate":"2020-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87915752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Preservation Technology for Non-Instantaneous Deteriorating Inventory Using Boundary Condition Estimation","authors":"Ihsan Hishamuddin, S. S. Supadi, M. Omar","doi":"10.11648/j.acm.20200904.12","DOIUrl":"https://doi.org/10.11648/j.acm.20200904.12","url":null,"abstract":"Various forms of preservation technology nowadays allow businesses to handle valuable perishable items with greater flexibility. Even with a wide variety of preservation techniques, the mathematical modelling of its implementation in EOQ literature remains rigid. The paper aims to integrate an improved preservation technology in a non-instantaneous deteriorating inventory model for businesses maximizing their average total cycle profit. The improved preservation technology furthers the delay to the time within the cycle where deterioration begins and enhances the durability of inventory that allows operators to employ a less prudent holding facility. Another improvement in this area is the accurate accumulation of preservation cost depending on the inventory level at hand. The conventional EOQ method of forming the objective function before choosing the optimal values for our two decision variables (Cycle time and level of preservation) is undertaken. The cycle time is split in two, differing in their inventory process (deterioration beginning in the second period). The time when deterioration begins is derived using the model's boundary conditions, a first attempt within the area. The optimal solution set is solved for a numerical example using an algorithm to demonstrate the model and prove the global nature of the solution. An investigation into the gains from the improved preservation technology is conducted by dissecting the effects within each individual component within the objective function. 3 separate channels by which this improved preservation technology modelling benefits the business model is found namely shifting to the higher profitable period, effects towards preservation affected costs and the returns to scale from successively increasing preservation levels. Sensitivity analysis is conducted to demonstrate and confirm the findings. The paper discovers great benefits from such an improved modelling that warrants further attention within the scope of preserved inventory models, especially on how levels of preservation could influence the traditional decision variable optimized such as cycle time or ordering frequency. Findings of the paper would have significant benefits to different inventory models with its own delay before deterioration and holding facility requirement.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"7 1","pages":"118"},"PeriodicalIF":10.0,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88859566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some Metric Properties of Semi-Regular Equilateral Nonagons","authors":"Nenad Stojanović","doi":"10.11648/J.ACM.20200903.17","DOIUrl":"https://doi.org/10.11648/J.ACM.20200903.17","url":null,"abstract":"A simple polygon that either has equal all sides or all interior angles is called a semi-regular nonagon. In terms of this definition, we can distinguish between two types of semi-regular polygons: equilateral polygons (that have equal all sides and different interior angles) and equiangular polygons (that have equal interior angles and different sides). Unlike regular polygons, one characteristic element is not enough to analyze the metric properties of semi-regular polygons, and an additional one is needed. To select this additional characteristic element, note that the following regular triangles can be inscribed to a semi-regular equilateral nonagon by joining vertices: ∆A1 A4A7, △ A2 A5 A8, △A3 A6 A9. Now have a look at triangle △A1 A4A7. Let us use the mark φ=∡(a,b1) to mark the angle between side a of the semi-regular nonagon and side b1 of the inscribed regular triangle. In interpreting the metric properties of a semi-regular equilateral nonagon, in addition to its side, we also use the angle that such side creates with the side of one of the three regular triangles that can be inscribed to such semi-regular nonagon. We consider the way in which convexity, possibility of construction, surface area, and other properties depend on a side of the semi-regular nonagon and angle φ=∡(a,b1).","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"30 5","pages":"102"},"PeriodicalIF":10.0,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72602591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. R. Onyango, M. Kinyanjui, M. Kimathi, S. M. Uppal
{"title":"Heat and Mass Transfer on MHD Jeffrey-Hamel Flow in Presence of Inclined Magnetic Field","authors":"E. R. Onyango, M. Kinyanjui, M. Kimathi, S. M. Uppal","doi":"10.11648/j.acm.20200904.11","DOIUrl":"https://doi.org/10.11648/j.acm.20200904.11","url":null,"abstract":"In this study, a magnetohydrodynamic Jeffrey-Hamel flow of a viscous, fluid that conducts electricity and is incompressible through a divergent conduit in presence of inclined variable magnetic field with heat and mass transfer has been investigated. The solutions of the governing equations of the MHD flow are obtained numerically since they are non-linear. The numerical scheme used is implemented in a computer software program and the results presented in graphical form. The velocity profile, the temperature profiles, the effect of variable magnetic field and of varying various dimensionless numbers on the flow are analyzed. Jeffrey-Hamel flows are also applied in the diffuser development. Some of the systems include; the channel between the compressor and gas turbine engine burner, the canal at departure from a gas turbine linked to the jet pipe, the canal subsequent to the impellor of a centrifugal compressor, wind tunnels with closed circuits, and water turbine draft tubes among several others. The results provide significant information for the improvement of proficiency and performance of technologies in aerospace, chemical, civil, environmental, industrial and mechanical applications.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"11 1","pages":"108"},"PeriodicalIF":10.0,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76415942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heuristic Algorithms of Coincidence for the Estimation of Movements in Compression of Images","authors":"Fernando José Hernández Gómez","doi":"10.11648/j.acm.20200903.15","DOIUrl":"https://doi.org/10.11648/j.acm.20200903.15","url":null,"abstract":"The NP-Completeness theory states that exact and efficient algorithms are unlikely to exist for the class of NP-difficult problems. One way to deal with NP hardness is to relax the optimality requirement and look for solutions instead that are close to the optimum. This is the main idea behind the approximation algorithms, which are called heuristic or metaheuristic. The problem of motion estimation is a process with a high degree of computational complexity, it requires sufficient memory space and execution time. It represents the cost of static, dynamic and video image sequence coding. The main task is to minimize the distortion rate and improve visual quality. This makes research in the field of coding, image compression and video focus on finding efficient algorithms to carry out the estimation of movement in a reasonable time. If a list of images of n elements is analyzed, there are feasible solutions. So, an exhaustive search is too slow, even for small values of the solution space. Therefore, from a practical point of view, it is crucial to have efficient and fast heuristic algorithms that avoid thorough search. In this investigation we design and implement heuristic algorithms, based on the frequency domain, which are applied on the coefficients of the discrete transform of the cosine and wavelets. Also, we propose temporal domain algorithms such as block-matching algorithms, which focus your search on the maximum coincidence of the current image with the reference one. The algorithms used during the implementation of this research work were written with the mathematical programming language MATLAB. In addition, we review the basic concepts of image processing, video, compression algorithms and motion estimation frequently used. The evaluation of the algorithms was carried out with a set of images provided by a previous acquisition system. We show the improvement of visual quality, the amount of compressed or reconstructed information and the behavior of the methods in the search for similarities between pixels or images. Finally, we contribute to the dissemination of new lines of scientific research that lead to the expansion and improvement of the study, the generation of new knowledge, since it is a young area within the Education discipline of Nicaragua.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"13 1","pages":"85"},"PeriodicalIF":10.0,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90508336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parametric Sensitivity Analysis of a Mathematical Model of the Effect of CO2 on the Climate Change","authors":"Bazuaye Frank Etin-Osa, Ijomah Maxwell Azubike","doi":"10.11648/j.acm.20200903.16","DOIUrl":"https://doi.org/10.11648/j.acm.20200903.16","url":null,"abstract":"Mathematical modeling is a very powerful tool for the study and understanding of the climate system. Modern climate models used in different applications are derived from a set of many-dimensional nonlinear differential equations in partial derivatives. The Climate models contain a wide number of model parameters that can describe external forcing that can strongly affect the behavior of the climate. It is imperative to estimate the influence of variations in parameters on climate change. The methods of 1-norm, 2-norm, and infinity-norm were used to quantify different forms of the sensitivity of model parameters. The approach applied in this research involves coding the given system of continuous non-linear first order ordinary differential equation in a Matlab solver, modifying and coding a similar program which is used for a variation of a single parameter one-at-a-time while other model parameters are fixed. Finally, the program is used to calculate the 1-norm, 2-norm, 3-norm and infinity norm of the solution trajectories in the same manner. The study shows that the most sensitivity parameters in the model are the concentration of a suitable absorbent and the rate of inflow of absorbent in the absorption chamber.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"30 1","pages":"96"},"PeriodicalIF":10.0,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90333873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uwakwe Joy Ijeoma, Inyama Simeon Chioma, O. Andrew
{"title":"Mathematical Model and Optimal Control of New-Castle Disease (ND)","authors":"Uwakwe Joy Ijeoma, Inyama Simeon Chioma, O. Andrew","doi":"10.11648/J.ACM.20200903.14","DOIUrl":"https://doi.org/10.11648/J.ACM.20200903.14","url":null,"abstract":"We formulated a five compartmental model of ND for both the ordinary and control models. We first determined the basic Reproduction number and the existence of Steady (Equilibrium) states (disease-free and endemic). Conditions for the local stability of the disease-free and endemic steady states were determined. Further, the Global stability of the disease-free equilibrium (DFE) and endemic equilibrium were proved using Lyponav method. We went further to carry out the sensitivity analysis or parametric dependence on R0 and later formulated the optimal control problem. We finally looked at numerical Results on poultry productivity in the presence of Infectious Newcastle Disease (ND) and we drew six graphs to demonstrate this. We observe that in absence of any control measure, the number of latently infected birds will increase rapidly from the initial population size of 80 to 160 birds within 1-3 days, whereas in the presence of control measures the population size will reduces to about 30 birds and goes to a stable state. This shows that the control measures are effective. The effect of the three control measures on the infectious classes can be seen. The number of non-productive infectious birds reduces to zero with control whereas the number of infectious productive reduces to about 8 birds and goes to its stable state when control is applied. This shows that the application of all three control measures tends to be more effective in the non- productive infectious bird population. It was also establish that the combination of efficient vaccination therapy and optimal efficacy of the vaccines are significantly more effective in the infectious productive birds’ population, since the combination reduces the population size of the birds to zero with 9–10 days. From the simulation also we see that optimal efficacy of the vaccine and effort to increase the number of recovered birds increases the number of latently infected birds population to about 129 at the early days of the infection whereas from another graph, the infectious productive birds reduces to 15 while the non -productive birds reduces to zero. The results from the simulation also show clearly, the effect of vaccination therapy on the latently infected birds. We observe that this programme will reduce the number of latently infected birds even if it not done more often. From the simulation, we further observe that this programme has effect on the infectious classes especially the non-productive infectious bird population, which reduces to zero after about 4 days.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"47 1","pages":"70"},"PeriodicalIF":10.0,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87564757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dnyanoba Maroti Suryawanshi, S. S. Bellale, Pratiksha Prakash Lenekar
{"title":"Approximating Solutions of Non Linear First Order Abstract Measure Differential Equations by Using Dhage Iteration Method","authors":"Dnyanoba Maroti Suryawanshi, S. S. Bellale, Pratiksha Prakash Lenekar","doi":"10.11648/J.ACM.20200903.13","DOIUrl":"https://doi.org/10.11648/J.ACM.20200903.13","url":null,"abstract":"In this paper we have proved the approximating solutions of the nonlinear first order abstract measure differential equation by using Dhage’s iteration method. The main result is based on the iteration method included in the hybrid fixed point theorem in a partially ordered normed linear space. Also we have solved an example for the applicability of given results in the paper. Sharma [2] initiated the study of nonlinear abstract differential equations and some basic results concerning the existence of solutions for such equations. Later, such equations were studied by various authors for different aspects of the solutions under continuous and discontinuous nonlinearities. The study of fixed point theorem for contraction mappings in partial ordered metric space is initiated by different authors. The study of hybrid fixed point theorem in partially ordered metric space is initiated by Dhage with applications to nonlinear differential and integral equations. The iteration method is also embodied in hybrid fixed point theorem in partially ordered spaces by Dhage [12]. The Dhage iteration method is a powerful tool for proving the existence and approximating results for nonlinear measure differential equations. The approximation of the solutions are obtained under weaker mixed partial continuity and partial Lipschitz conditions. In this paper we adopted this iteration method technique for abstract measure differential equations.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"26 1","pages":"64"},"PeriodicalIF":10.0,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87071154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal Conductivity Equations via the Improved Adomian Decomposition Methods","authors":"Ashenafi Gizaw Jije","doi":"10.11648/J.ACM.20200903.11","DOIUrl":"https://doi.org/10.11648/J.ACM.20200903.11","url":null,"abstract":"Several mathematical models that explain natural phenomena are mostly formulated in terms of nonlinear differential equations. Many problems in applied sciences such as nuclear physics, engineering, thermal management, gas dynamics, chemical reaction, studies of atomic structures and atomic calculations lead to singular boundary value problems and often only positive solutions are vital. However, most of the methods developed in mathematics are used in solving linear differential equations. For this reason, this research considered a model problem representing temperature distribution in heat dissipating fins with triangular profiles using MATLAB codes. MADM was used with a computer code in MATLAB to seek solution for the problem involving constant and a power law dependence of thermal conductivity on temperature governed by linear and nonlinear BVPs, respectively, for which considerable results were obtained. A problem formulated dealing with a triangular silicon fin and more examples were solved and analyzed using tables and figures for better elaborations where appreciable agreement between the approximate and exact solutions was observed. All the computations were performed using MATHEMATICA and MATLAB.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"1 1","pages":"30"},"PeriodicalIF":10.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83912225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}