Dnyanoba Maroti Suryawanshi, S. S. Bellale, Pratiksha Prakash Lenekar
{"title":"非线性一阶抽象测度微分方程的Dhage迭代近似解","authors":"Dnyanoba Maroti Suryawanshi, S. S. Bellale, Pratiksha Prakash Lenekar","doi":"10.11648/J.ACM.20200903.13","DOIUrl":null,"url":null,"abstract":"In this paper we have proved the approximating solutions of the nonlinear first order abstract measure differential equation by using Dhage’s iteration method. The main result is based on the iteration method included in the hybrid fixed point theorem in a partially ordered normed linear space. Also we have solved an example for the applicability of given results in the paper. Sharma [2] initiated the study of nonlinear abstract differential equations and some basic results concerning the existence of solutions for such equations. Later, such equations were studied by various authors for different aspects of the solutions under continuous and discontinuous nonlinearities. The study of fixed point theorem for contraction mappings in partial ordered metric space is initiated by different authors. The study of hybrid fixed point theorem in partially ordered metric space is initiated by Dhage with applications to nonlinear differential and integral equations. The iteration method is also embodied in hybrid fixed point theorem in partially ordered spaces by Dhage [12]. The Dhage iteration method is a powerful tool for proving the existence and approximating results for nonlinear measure differential equations. The approximation of the solutions are obtained under weaker mixed partial continuity and partial Lipschitz conditions. In this paper we adopted this iteration method technique for abstract measure differential equations.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"26 1","pages":"64"},"PeriodicalIF":4.6000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating Solutions of Non Linear First Order Abstract Measure Differential Equations by Using Dhage Iteration Method\",\"authors\":\"Dnyanoba Maroti Suryawanshi, S. S. Bellale, Pratiksha Prakash Lenekar\",\"doi\":\"10.11648/J.ACM.20200903.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have proved the approximating solutions of the nonlinear first order abstract measure differential equation by using Dhage’s iteration method. The main result is based on the iteration method included in the hybrid fixed point theorem in a partially ordered normed linear space. Also we have solved an example for the applicability of given results in the paper. Sharma [2] initiated the study of nonlinear abstract differential equations and some basic results concerning the existence of solutions for such equations. Later, such equations were studied by various authors for different aspects of the solutions under continuous and discontinuous nonlinearities. The study of fixed point theorem for contraction mappings in partial ordered metric space is initiated by different authors. The study of hybrid fixed point theorem in partially ordered metric space is initiated by Dhage with applications to nonlinear differential and integral equations. The iteration method is also embodied in hybrid fixed point theorem in partially ordered spaces by Dhage [12]. The Dhage iteration method is a powerful tool for proving the existence and approximating results for nonlinear measure differential equations. The approximation of the solutions are obtained under weaker mixed partial continuity and partial Lipschitz conditions. In this paper we adopted this iteration method technique for abstract measure differential equations.\",\"PeriodicalId\":55503,\"journal\":{\"name\":\"Applied and Computational Mathematics\",\"volume\":\"26 1\",\"pages\":\"64\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11648/J.ACM.20200903.13\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/J.ACM.20200903.13","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Approximating Solutions of Non Linear First Order Abstract Measure Differential Equations by Using Dhage Iteration Method
In this paper we have proved the approximating solutions of the nonlinear first order abstract measure differential equation by using Dhage’s iteration method. The main result is based on the iteration method included in the hybrid fixed point theorem in a partially ordered normed linear space. Also we have solved an example for the applicability of given results in the paper. Sharma [2] initiated the study of nonlinear abstract differential equations and some basic results concerning the existence of solutions for such equations. Later, such equations were studied by various authors for different aspects of the solutions under continuous and discontinuous nonlinearities. The study of fixed point theorem for contraction mappings in partial ordered metric space is initiated by different authors. The study of hybrid fixed point theorem in partially ordered metric space is initiated by Dhage with applications to nonlinear differential and integral equations. The iteration method is also embodied in hybrid fixed point theorem in partially ordered spaces by Dhage [12]. The Dhage iteration method is a powerful tool for proving the existence and approximating results for nonlinear measure differential equations. The approximation of the solutions are obtained under weaker mixed partial continuity and partial Lipschitz conditions. In this paper we adopted this iteration method technique for abstract measure differential equations.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.