{"title":"Thermal Conductivity Equations via the Improved Adomian Decomposition Methods","authors":"Ashenafi Gizaw Jije","doi":"10.11648/J.ACM.20200903.11","DOIUrl":null,"url":null,"abstract":"Several mathematical models that explain natural phenomena are mostly formulated in terms of nonlinear differential equations. Many problems in applied sciences such as nuclear physics, engineering, thermal management, gas dynamics, chemical reaction, studies of atomic structures and atomic calculations lead to singular boundary value problems and often only positive solutions are vital. However, most of the methods developed in mathematics are used in solving linear differential equations. For this reason, this research considered a model problem representing temperature distribution in heat dissipating fins with triangular profiles using MATLAB codes. MADM was used with a computer code in MATLAB to seek solution for the problem involving constant and a power law dependence of thermal conductivity on temperature governed by linear and nonlinear BVPs, respectively, for which considerable results were obtained. A problem formulated dealing with a triangular silicon fin and more examples were solved and analyzed using tables and figures for better elaborations where appreciable agreement between the approximate and exact solutions was observed. All the computations were performed using MATHEMATICA and MATLAB.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"1 1","pages":"30"},"PeriodicalIF":4.6000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/J.ACM.20200903.11","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Several mathematical models that explain natural phenomena are mostly formulated in terms of nonlinear differential equations. Many problems in applied sciences such as nuclear physics, engineering, thermal management, gas dynamics, chemical reaction, studies of atomic structures and atomic calculations lead to singular boundary value problems and often only positive solutions are vital. However, most of the methods developed in mathematics are used in solving linear differential equations. For this reason, this research considered a model problem representing temperature distribution in heat dissipating fins with triangular profiles using MATLAB codes. MADM was used with a computer code in MATLAB to seek solution for the problem involving constant and a power law dependence of thermal conductivity on temperature governed by linear and nonlinear BVPs, respectively, for which considerable results were obtained. A problem formulated dealing with a triangular silicon fin and more examples were solved and analyzed using tables and figures for better elaborations where appreciable agreement between the approximate and exact solutions was observed. All the computations were performed using MATHEMATICA and MATLAB.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.