{"title":"A case study of South Australia’s severe thunderstorm and tornado outbreak 28 September 2016","authors":"Dragana Zovko-Rajak, K. Tory, J. Kepert","doi":"10.1071/es22006","DOIUrl":"https://doi.org/10.1071/es22006","url":null,"abstract":"On September 28, 2016 one of the most significant thunderstorm outbreaks recorded in South Australia impacted central and eastern parts of the state. Multiple supercell thunderstorms were embedded in a Quasi-Linear Convective System (QLCS, Weisman & Trapp 2003) aligned with a strong cold front that was associated with an intense low-pressure system. The storms produced at least seven tornadoes, destructive wind gusts, large hail and intense rainfall. Transmission lines were brought down in four different locations, which contributed to a state-wide power outage.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"50 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89624002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Kombara, A. Pratama, Waluyo Eko Cahyono, W. Setyawati, Emmanuel Adetya, H. L. Fitriana
{"title":"Utilisation FINN data version 2.5 for forecasting PM2.5 during forest fire 2019 in Sumatra by using WRF–Chem","authors":"P. Kombara, A. Pratama, Waluyo Eko Cahyono, W. Setyawati, Emmanuel Adetya, H. L. Fitriana","doi":"10.1071/es22030","DOIUrl":"https://doi.org/10.1071/es22030","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"51 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88187867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A wave-driven surface circulation feature in Table Bay","authors":"M. de Vos, M. Vichi, C. Rautenbach","doi":"10.1071/es22002","DOIUrl":"https://doi.org/10.1071/es22002","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"269 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73484703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of ACCESS-S1 seasonal forecasts of growing season precipitation for Western Australia’s wheatbelt region","authors":"R. Firth, J. Kala, D. Hudson, F. Evans","doi":"10.1071/es22031","DOIUrl":"https://doi.org/10.1071/es22031","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"6 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78905067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Grose, Ghyslaine Boschat, B. Trewin, Vanessa Round, Linden Ashcroft, A. King, S. Narsey, E. Hawkins
{"title":"Australian climate warming: observed change from 1850 and global temperature targets","authors":"M. Grose, Ghyslaine Boschat, B. Trewin, Vanessa Round, Linden Ashcroft, A. King, S. Narsey, E. Hawkins","doi":"10.1071/es22018","DOIUrl":"https://doi.org/10.1071/es22018","url":null,"abstract":"Mean annual temperature is often used as a benchmark for monitoring climate change and as an indicator of its potential impacts. The Paris Agreement of 2015 aims to keep the global average temperature well below 2°C above pre-industrial levels, with a preferred limit of 1.5°C. Therefore, there is interest in understanding and examining regional temperature change using this framework of ‘global warming levels’, as well as through emissions pathways and time horizons. To apply the global warming level framework regionally, we need to quantify regional warming from the late 19th century to today, and to future periods where the warming levels are reached. Here we supplement reliable observations from 1910 with early historical datasets currently available back to 1860 and the latest set of global climate model simulations from CMIP5/CMIP6 to examine the past and future warming of Australia from the 1850–1900 baseline commonly used as a proxy for pre-industrial conditions. We find that Australia warmed by ~1.6°C between 1850–1900 and 2011–2020 (with uncertainty unlikely to substantially exceed ±0.3°C). This warming is a ratio of ~1.4 times the ~1.1°C global warming over that time, and in line with observed global land average warming. Projections for global warming levels are also quantified and suggest future warming of slightly less than the observed ratio to date, at ~1.0–1.3 for all future global warming levels. We also find that to reliably examine regional warming under the emissions pathway framework using the latest climate models from CMIP6, appropriate weights to the ensemble members are required. Once these weights are applied, results are similar to CMIP5.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"1 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76078902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Mills, O. Salkin, M. Fearon, Sarah Harris, T. Brown, Hauss J. Reinbold
{"title":"Meteorological drivers of the eastern Victorian Black Summer (2019–2020) fires","authors":"G. Mills, O. Salkin, M. Fearon, Sarah Harris, T. Brown, Hauss J. Reinbold","doi":"10.1071/es22011","DOIUrl":"https://doi.org/10.1071/es22011","url":null,"abstract":"The spring and summer of 2019–2020 (Black Summer) saw the largest and most significant bushfire outbreak recorded in eastern Australia. In Victoria, the fires ran from mid-November through early autumn. In this paper, we use a high-spatial and temporal resolution 48-year fire weather re-analysis data set (VicClim5) to describe fire weather and vertical wind and stability profiles for five significant high Forest Fire Danger Index (FFDI) fire events and compare these with detailed fire reconstructions. A feature of several of these fires was very active overnight fire spread driven by topographically enhanced low-level jets and low fine fuel moisture content. The FFDI values on these nights were either the highest or near highest on record in the 48-year data set. We describe cases of lightning ignition, prefrontal fire spread and two cases of post-frontal fire spread – one into Mallacoota on the early morning of 31 December 2019 and the other a northward overnight run down the Buffalo Valley on 4–5 January 2020. On two of the days studied there were complex wind changes associated with the inland penetration of low-level south-easterly winds under the influence of locally generated pressure gradients. An elevated hot, dry mixed layer above these shallow layers also played an important role. On one occasion there is some evidence of possible mountain-wave modulation of surface wind flows. These events demonstrate a range of features of the fire weather and climate in eastern Victoria and the utility of VicClim5 in 3-dimensional climatological analyses.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"1 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73800247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew R. Klekociuk, Matthew B. Tully, Paul B. Krummel, Stuart I. Henderson, Dan Smale, Richard Querel, Sylvia Nichol, Simon P. Alexander, Paul J. Fraser, Gerald Nedoluha
{"title":"The Antarctic ozone hole during 2020","authors":"Andrew R. Klekociuk, Matthew B. Tully, Paul B. Krummel, Stuart I. Henderson, Dan Smale, Richard Querel, Sylvia Nichol, Simon P. Alexander, Paul J. Fraser, Gerald Nedoluha","doi":"10.1071/es21015","DOIUrl":"https://doi.org/10.1071/es21015","url":null,"abstract":"<p>The Antarctic ozone hole remains the focus of scientific attention because of its importance to the health of the biosphere and its influence on the climate of the southern hemisphere. Here we examine the general characteristics of the 2020 Antarctic ozone hole using a variety of observational and reanalysis data and compare and contrast its behaviour with earlier years. The main feature of the 2020 ozone hole was its relatively large size, and persistence to the beginning of the 2020/2021 summer, with new maximum records being set for the ozone hole daily area and ozone mass deficit during November and December. This was in strong contrast to 2019 when the ozone hole was one of the smallest observed. We show that a key factor in 2020 was the relative stability and strength of the stratospheric polar vortex, which allowed low temperatures in the Antarctic lower stratosphere to enhance ozone depletion reactions in relative isolation from the rest of the global atmosphere. These conditions were associated with relatively weak Rossby wave activity at high southern latitudes that occurred during the strengthening westerly phase of the Quasi Biennial Oscillation as well as the emerging La Niña phase of the El Niño Southern Oscillation. A consequence of the conditions in early summer was the measurement of new maximum values of ultraviolet radiation at Australia’s three Antarctic research stations of Mawson, Davis and Casey. Indications of anomalous chlorine partitioning above Arrival Heights in Antarctica prior to the 2020 winter are provided, which may relate to effects from the 2019/2020 Australian wildfires. We also examine the effect of the downward coupling of the 2020 ozone hole to the climate of the wider southern hemisphere, which showed regional influences on surface temperature and precipitation in common with other strong vortex years.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"47 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Rashid, Arnold Sullivan, M. Dix, Daohua Bi, C. Mackallah, T. Ziehn, P. Dobrohotoff, S. O’Farrell, I. Harman, R. Bodman, S. Marsland
{"title":"Evaluation of climate variability and change in ACCESS historical simulations for CMIP6","authors":"H. Rashid, Arnold Sullivan, M. Dix, Daohua Bi, C. Mackallah, T. Ziehn, P. Dobrohotoff, S. O’Farrell, I. Harman, R. Bodman, S. Marsland","doi":"10.1071/es21028","DOIUrl":"https://doi.org/10.1071/es21028","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"21 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78658208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiang-ping Zhu, A. Xie, X. Qin, Bingbo Xu, Yicheng Wang
{"title":"Projected changes in Antarctic daily temperature in CMIP6 under different warming scenarios during two future periods","authors":"Jiang-ping Zhu, A. Xie, X. Qin, Bingbo Xu, Yicheng Wang","doi":"10.1071/es22008","DOIUrl":"https://doi.org/10.1071/es22008","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"33 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82432184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grethel García Bu Bucogen, M. Piccolo, V. Y. Bohn, Gabriel Eduardo Huck
{"title":"Using Chaos theory fundamentals for analysing temperature, precipitation variability and trends in Northern Patagonia, Argentina","authors":"Grethel García Bu Bucogen, M. Piccolo, V. Y. Bohn, Gabriel Eduardo Huck","doi":"10.1071/es22009","DOIUrl":"https://doi.org/10.1071/es22009","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"1 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88664352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}