{"title":"Spot Joining of PVC to Aluminum Sheets via Cold Forward Extrusion","authors":"I.T. Abdullah, M.H. Ridha, M.K. Mejbel, S.K. Hussein","doi":"10.1007/s40799-023-00688-4","DOIUrl":"10.1007/s40799-023-00688-4","url":null,"abstract":"<div><p>An essential consideration for metal-polymer applications is that the sound joining of these materials is challenging due to a significant surface energy differential in different structural characteristics between polymer and metal. However, the joining methods have some drawbacks, such as low-reliability joints, long curing time, stress concentration, and polymer degradation. A new novel metal-polymer hybrid joining technique is proposed in this work to overcome these issues and cost perspectives, manufacturing, and overcoming the problem of PVC degradation due to heat generation of other joining methods. In this study, we managed to join PVC to AA5053 sheets using a cold joining technique based on extruding PVC through a conical hole of an aluminum specimen using a punching tool. Experiments consisted of three parameters (the hole diameter, plunging depth, and radius of the punch), with four levels for each parameter. The experiments were designed, and mechanical characterizations of the joints were optimized using the design of the experiment's method. The hole diameter was the effective parameter on the mechanical characterizations and dimensions of the extruded PVC. Increasing the diameter of the AA5053 sheet increased the maximum diameter of the extruded PVC, shear force, and pull-out force of the joints and decreased the shear stress of the joints. We obtained a maximum shear strength of 106.15 MPa, which is ~3 times higher than the tensile strength of PVC (37 MPa).</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"677 - 691"},"PeriodicalIF":1.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation on the Design and Application of Hydraulic Loading Fatigue Test Device for Non-Vascular Stent","authors":"Y. Li, J. Li, M. Mao, H. Yin, X. Ni, C. Pan","doi":"10.1007/s40799-023-00685-7","DOIUrl":"10.1007/s40799-023-00685-7","url":null,"abstract":"<div><h3>Background</h3><p>The implanted non-vascular stent is prone to fatigue fracture due to the periodic cyclic load caused by long-term physiological motion in the non-vascular lumen.</p><h3>Objective</h3><p>To effectively study and predict the fatigue performance of non-vascular stents, an experimental setup was designed to simulate and conduct fatigue performance tests on non-vascular stents under various loads. This design simplified the periodic cyclic loads generated within non-vascular lumens, in accordance with the physiological motion patterns of non-vascular lumens, into pulsatile loads.</p><h3>Methods</h3><p>To meet the requirements of different stents and various fluctuating load conditions during testing, the relationship between test conditions and the fatigue load of the stent was studied based on Fluent.</p><h3>Results</h3><p>A fatigue test device with a special load module was built and used to complete the fatigue performance test of a group of esophageal stents. It can be found that the experimental device can satisfy the control and application of the fatigue load of the stent, and can effectively realize the testing requirements of the fatigue performance of the stent.</p><h3>Conclusion</h3><p>In this paper, a non-vascular stent fatigue in vitro test device that can simulate the fluctuating load of a non-vascular lumen is designed. The results of flow field simulation, fatigue simulation, and actual fatigue test show that the device can meet the needs of fatigue test and has good versatility and operability.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"643 - 655"},"PeriodicalIF":1.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Modal Analysis and Operational Deflection Shape Analysis of a Cantilever Plate in a Wind Tunnel with Finite Element Model Verification","authors":"D. T. Will, W. D. Zhu","doi":"10.1007/s40799-023-00682-w","DOIUrl":"10.1007/s40799-023-00682-w","url":null,"abstract":"<div><p>This work explores the response of a cantilever plate attached to a cylinder in a wind tunnel under an impact excitation. A detailed computer-aided design (CAD) model and the finite element analysis (FEA) modal simulation of the experimental setup are introduced. Two experimental techniques are thoroughly discussed: an accelerometer-based experimental modal analysis (EMA) method, and a non-contact, full-field, high-speed digital image correlation (DIC)-based operational deflection shape (ODS) analysis method. The experimental and FEA results of the first seven natural frequencies, mode shapes, and ODSs of the cantilever plate are presented and compared. The percent differences between the EMA and FEA natural frequency results are less than 4.8%, and the modal assurance criterion (MAC) values between the EMA and FEA mode shapes are at least 0.845. The percent differences between the ODS analysis and FEA natural frequency results are less than 3.4%, while the MAC values between the ODS analysis ODSs and FEA mode shapes are at least 0.728. The percent differences between the EMA and ODS analysis natural frequency results are less than 3.5%, and the MAC values between the EMA mode shapes and ODS analysis ODSs are at least 0.505. There are two sets of two different mode shapes and ODSs with relatively high correlation. One set is a set of two closely spaced modes and ODSs approximately 20 Hz apart with obvious similarities in shape. The other set is a set of two modes and ODSs approximately 100 Hz apart that share less obvious similarities in shape.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"623 - 642"},"PeriodicalIF":1.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Abdelgawad, A. Nassef, Mohamed T. Eraky, M. Saber
{"title":"Mechanical Behavior of Seamless Pipes Using Ring Expansion Technique and Novel Hoop Stress Correlation Factor (K)","authors":"K. Abdelgawad, A. Nassef, Mohamed T. Eraky, M. Saber","doi":"10.1007/s40799-023-00683-9","DOIUrl":"10.1007/s40799-023-00683-9","url":null,"abstract":"<div><p>This study investigated the stress–strain behavior of seamless pipes in the hoop direction using the ring expansion test, which is a non-standardized mechanical testing technique used for evaluating the mechanical properties of round tubes. However, this technique has limitations, such as unidentified specimen geometry, strain measurement, and the estimation of friction coefficients. The study employed experimental, numerical, and analytical methodologies to address these limitations and throughout the study, a novel hoop stress correlation factor (K) was identified to be multiplied by the hoop stress derived equation for reduced section ring specimens. The experimental strain was measured using a newly derived analytical equation, and a mathematical predictive model was developed to estimate the K-factor using the Design of Experiment (DoE) and Design-Expert statistical software. The study concluded that the ring expansion test is a promising technique for evaluating the mechanical properties of seamless pipes similar to the unified axial tensile stress–strain behavior. However, future research is needed to estimate the hoop stress correlation value (K) for all ring geometries. The study's finding of the novel hoop stress correlation factor (K) in the case of a reduced section ring specimen is particularly noteworthy, as it addresses a significant research gap in the field.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"611 - 622"},"PeriodicalIF":1.5,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40799-023-00683-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135932895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Numerical Investigation of Delamination Between Epoxy Molding Compound (EMC) and Metal in Encapsulated Microelectronic Packages","authors":"M.-K. Shih, Y.-H. Liu, G.-S. Lin, E. Hsu, J. Yang","doi":"10.1007/s40799-023-00679-5","DOIUrl":"10.1007/s40799-023-00679-5","url":null,"abstract":"<div><p>Microelectronics packages play a vital role in not only interconnecting the electronic signals from the die to the printed circuit board (PCB), but also in protecting the chips during the manufacturing process and their subsequent service lives. Epoxy molding compound (EMC) is widely used in electronic packaging due to its superior processing capability and low circuit signal delay. However, interfacial delamination is a common problem in encapsulated silicon devices, particularly at the interface between the copper leadframe (LF) pads and the EMC due to the weaker adhesion strength. Accordingly, the present study employs a double cantilever beam (DCB) experimental testing method and a numerical model based on the virtual crack closure technique (VCCT) to investigate the fracture behavior at the EMC/Cu LF interface in a quad flat no leads (QFN) package. The experiments are performed on an MTS-Acumen microforce tester equipped with a load unit capable of applying a force of 0.01 to 1250 N with a displacement resolution of 0.1 μm. The DCB specimens are prepared with a pre-crack length of 12 mm. The validity of the simulation model is confirmed by comparing the predicted values of the critical strain energy release rate (SERR, G<sub>c</sub>) between the EMC and the copper LF pads with the experimental observations. In general, the results show that the G<sub>c</sub> value provides a useful parameter for evaluating the delamination risk of encapsulated microelectronics packages and assessing the reliability of alternative package architectures.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"599 - 609"},"PeriodicalIF":1.5,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136317566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameters Identification of a Generalized Prandtl-Ishlinskii Model for a Micro-Positioning Stage Using Mutual Shape Memory Alloy Actuators","authors":"H. Rahbari, A. Fathi, M. Dardel","doi":"10.1007/s40799-023-00680-y","DOIUrl":"10.1007/s40799-023-00680-y","url":null,"abstract":"<div><p>Implementing smart materials as an actuator in fabricating micro-positioning systems has become pervasive in recent years. However, the application of Shape Memory Alloy (SMA) smart materials is limited due to its complex nonlinear mechanical behavior, such as asymmetric hysteresis and saturation characteristics. One of the most potent experimental-based methods of modeling these nonlinearities is the Generalized Prandtl-Ishlinskii (GPI) model. Unlike similar methods such as the Preisach model, this model is analytically invertible. This study aims to develop a micro-positioning stage and identify an experimental-based model describing the system response. The model structure is composed of two cascade sub-models. In the first sub-model, which models the actuator thermal behavior, the parameters of a linear dynamic model are identified. This sub-model predicts the actuator temperature given the electrical current. The second sub-model estimates the phase transformation and consequently the actuator displacement as a function of temperature. The GPI structure has been used for constructing the Wiener sub-model. The experimental and numerical results showed that the proposed black box model can accurately describe the system behavior, although identifying a comprehensive model to adequately describe the SMA actuator is a great challenge.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"585 - 597"},"PeriodicalIF":1.5,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Hou, C. Liu, J. Wang, Y. Lu, X. Liu, H. Jiang, Z. Tang, P. Fang
{"title":"Analysis and Solution for the Vibration of Direct-Acting Pressure Valve Under Small Opening Conditions","authors":"F. Hou, C. Liu, J. Wang, Y. Lu, X. Liu, H. Jiang, Z. Tang, P. Fang","doi":"10.1007/s40799-023-00678-6","DOIUrl":"10.1007/s40799-023-00678-6","url":null,"abstract":"<div><p>The boundary performance of direct-acting pressure valves (DAPV) is significantly impacted by surging in small opening situations. This paper illustrates the causes of vibration of DAPVs under small opening conditions from the viewpoints of statics and dynamics. This paper studies a pressure valve using several techniques. These include studying the structural dynamics of the pressure valve using experimental and modal analysis methods, simulating the pressure valve vibration process using flow-solid-control coupling simulation methods, and studying the internal jet characteristics of the pressure valve using non-constant flow field simulation analysis methods. Based on the conclusions drawn from the above methods, several possible effective vibration damping methods are proposed to improve the performance of DAPVs under low flow conditions.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 3","pages":"569 - 582"},"PeriodicalIF":1.5,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anshuman Kumar, Chandramani Upadhyay, Naveen Kumar, A. V. S. Ram Prasad, Dusanapudi Siva Nagaraju
{"title":"Soft Computing Based Parametric Optimization of Cutting Rate, Surface Roughness, and Kerf Width in Wire Electric Discharge Machining of High Strength Ti-3Al-2.5 V","authors":"Anshuman Kumar, Chandramani Upadhyay, Naveen Kumar, A. V. S. Ram Prasad, Dusanapudi Siva Nagaraju","doi":"10.1007/s40799-023-00681-x","DOIUrl":"10.1007/s40799-023-00681-x","url":null,"abstract":"<div><p>The present study focused on the machinability of Ti-3Al-2.5 V for wire-electrical discharge machining (WEDM) using \"BroncoCut-X wire\" (zinc-coated copper wire). The machining characteristics have been evaluated by varying wire-tension (T<sub>w</sub>), wire-speed (S<sub>w</sub>), flushing-pressure (P<sub>f</sub>), discharge current (I<sub>d</sub>), and spark-on-time (S<sub>on</sub>). The response characteristics associated with cutting-speed (Cs), kerf-width (KW), and surface roughness (RA) have been collected and analyzed using main-effect plots, scanning electron microscope (SEM), and analysis of variance (ANOVA). The maximum Cs and minimum KW and RA are obtained upto 8.90 mm/min, 3.34 µm and 0.2218 mm, respectively. Additionally, the novelty lies in the smart hybrid prediction tool considering the conflicting nature of responses are converted into single responses using Grey Relation Analysis (GRA) and Fuzzy Interference System (FIS) (Namely: Gray-Fuzzy Reasoning Grade (GFRG)). Furthermore, the optimal performance is calculated using Rao-algorithms (i.e., Rao1, Rao2, and Rao3). The obtained ideal machining condition is 16N wire-tension, 3 m/min wire-speed, 8 kg/mm<sup>2</sup> flushing-pressure, 21A discharge current, and 14 µs spark-on-time. The result has also been compared with the JAYA-algorithm and improved-grey wolf optimizer (I-GWO) to demonstrate the efficacy of the intended approach. The confirmation test has been conducted and obtained that the GFRG-based results are further improved by using a hybrid GFRG-based Rao-algorithm of 9.55%, 2.36%, and 7.99% as Cs, KW and RA, respectively. Furthermore, this study shows that the proposed multi-objective optimization method not only leads to more stable solutions but also to shorter run times and enhanced quality to support engineers in reducing the cost of item failures.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 3","pages":"537 - 558"},"PeriodicalIF":1.5,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}