{"title":"A Bayesian Nonparametric Latent Space Approach to Modeling Evolving Communities in Dynamic Networks","authors":"Joshua Daniel Loyal, Yuguo Chen","doi":"10.1214/21-ba1300","DOIUrl":"https://doi.org/10.1214/21-ba1300","url":null,"abstract":"The evolution of communities in dynamic (time-varying) network data is a prominent topic of interest. A popular approach to understanding these dynamic networks is to embed the dyadic relations into a latent metric space. While methods for clustering with this approach exist for dynamic networks, they all assume a static community structure. This paper presents a Bayesian nonparametric model for dynamic networks that can model networks with evolving community structures. Our model extends existing latent space approaches by explicitly modeling the additions, deletions, splits, and mergers of groups with a hierarchical Dirichlet process hidden Markov model. Our proposed approach, the hierarchical Dirichlet process latent position cluster model (HDP-LPCM), incorporates transitivity, models both individual and group level aspects of the data, and avoids the computationally expensive selection of the number of groups required by most popular methods. We provide a Markov chain Monte Carlo estimation algorithm and demonstrate its ability to detect evolving community structure in a network of military alliances during the Cold War and a narrative network constructed from the Game of Thrones television series.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"285 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135643392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Latent Shrinkage Position Model for Binary and Count Network Data","authors":"Xian Yao Gwee, Isobel Claire Gormley, Michael Fop","doi":"10.1214/23-ba1403","DOIUrl":"https://doi.org/10.1214/23-ba1403","url":null,"abstract":"Interactions between actors are frequently represented using a network. The latent position model is widely used for analysing network data, whereby each actor is positioned in a latent space. Inferring the dimension of this space is challenging. Often, for simplicity, two dimensions are used or model selection criteria are employed to select the dimension, but this requires choosing a criterion and the computational expense of fitting multiple models. Here the latent shrinkage position model (LSPM) is proposed which intrinsically infers the effective dimension of the latent space. The LSPM employs a Bayesian nonparametric multiplicative truncated gamma process prior that ensures shrinkage of the variance of the latent positions across higher dimensions. Dimensions with non-negligible variance are deemed most useful to describe the observed network, inducing automatic inference on the latent space dimension. While the LSPM is applicable to many network types, logistic and Poisson LSPMs are developed here for binary and count networks respectively. Inference proceeds via a Markov chain Monte Carlo algorithm, where novel surrogate proposal distributions reduce the computational burden. The LSPM’s properties are assessed through simulation studies, and its utility is illustrated through application to real network datasets. Open source software assists wider implementation of the LSPM.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135051558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Use of a Local Rˆ to Improve MCMC Convergence Diagnostic","authors":"Théo Moins, Julyan Arbel, A. Dutfoy, S. Girard","doi":"10.1214/23-ba1399","DOIUrl":"https://doi.org/10.1214/23-ba1399","url":null,"abstract":"Diagnosing convergence of Markov chain Monte Carlo is crucial and remains an essentially unsolved problem. Among the most popular methods, the potential scale reduction factor, commonly named ˆ R , is an indicator that monitors the convergence of output chains to a target distribution, based on a comparison of the between- and within-variances. Several improvements have been suggested since its introduction in the 90s. Here, we aim at better understanding the ˆ R behavior by proposing a localized version that focuses on quantiles of the target distribution. This new version relies on key theoretical properties of the associated population value. It naturally leads to proposing a new indicator ˆ R ∞ , which is shown to allow both for localizing the Markov chain Monte Carlo convergence in different quantiles of the target distribution, and at the same time for handling some convergence issues not detected by other ˆ R versions.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44085501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Objective Bayesian Model Selection for Spatial Hierarchical Models with Intrinsic Conditional Autoregressive Priors","authors":"Erica M. Porter, C. Franck, Marco A. R. Ferreira","doi":"10.1214/23-ba1375","DOIUrl":"https://doi.org/10.1214/23-ba1375","url":null,"abstract":"","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42465458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coarsened Mixtures of Hierarchical Skew Normal Kernels for Flow and Mass Cytometry Analyses","authors":"S. Gorsky, Cliburn Chan, Li Ma","doi":"10.1214/22-ba1356","DOIUrl":"https://doi.org/10.1214/22-ba1356","url":null,"abstract":"","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47319315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Warped Gradient-Enhanced Gaussian Process Surrogate Models for Exponential Family Likelihoods with Intractable Normalizing Constants","authors":"Quan Vu, Matthew T. Moores, Andrew Zammit-Mangion","doi":"10.1214/23-ba1400","DOIUrl":"https://doi.org/10.1214/23-ba1400","url":null,"abstract":"Markov chain Monte Carlo methods for exponential family models with intractable normalizing constant, such as the exchange algorithm, require simulations of the sufficient statistics at every iteration of the Markov chain, which often result in expensive computations. Surrogate models for the likelihood function have been developed to accelerate inference algorithms in this context. However, these surrogate models tend to be relatively inflexible, and often provide a poor approximation to the true likelihood function. In this article, we propose the use of a warped, gradient-enhanced, Gaussian process surrogate model for the likelihood function, which jointly models the sample means and variances of the sufficient statistics, and uses warping functions to capture covariance nonstationarity in the input parameter space. We show that both the consideration of nonstationarity and the inclusion of gradient information can be leveraged to obtain a surrogate model that outperforms the conventional stationary Gaussian process surrogate model when making inference, particularly in regions where the likelihood function exhibits a phase transition. We also show that the proposed surrogate model can be used to improve the effective sample size per unit time when embedded in exact inferential algorithms. The utility of our approach in speeding up inferential algorithms is demonstrated on simulated and real-world data.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135103369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua S. North, Christopher K. Wikle, Erin M. Schliep
{"title":"A Bayesian Approach for Spatio-Temporal Data-Driven Dynamic Equation Discovery","authors":"Joshua S. North, Christopher K. Wikle, Erin M. Schliep","doi":"10.1214/23-ba1406","DOIUrl":"https://doi.org/10.1214/23-ba1406","url":null,"abstract":"Differential equations based on physical principals are used to represent complex dynamic systems in all fields of science and engineering. When known, these equations have been shown to well represent real-world dynamics. However, since the true dynamics of complex systems are generally unknown, learning the governing equations can improve our understanding of the mechanisms driving the systems. Here, we develop a Bayesian approach to data-driven discovery of nonlinear spatio-temporal dynamic equations. Our approach can accommodate measurement error and missing data, both of which are common in real-world data, and accounts for parameter uncertainty. The proposed framework is illustrated using three simulated systems with varying amounts of measurement uncertainty and missing data and applied to a real-world system to infer the temporal evolution of the vorticity of the streamfunction.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135051937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}