{"title":"利用局部R -改进MCMC收敛诊断","authors":"Théo Moins, Julyan Arbel, A. Dutfoy, S. Girard","doi":"10.1214/23-ba1399","DOIUrl":null,"url":null,"abstract":"Diagnosing convergence of Markov chain Monte Carlo is crucial and remains an essentially unsolved problem. Among the most popular methods, the potential scale reduction factor, commonly named ˆ R , is an indicator that monitors the convergence of output chains to a target distribution, based on a comparison of the between- and within-variances. Several improvements have been suggested since its introduction in the 90s. Here, we aim at better understanding the ˆ R behavior by proposing a localized version that focuses on quantiles of the target distribution. This new version relies on key theoretical properties of the associated population value. It naturally leads to proposing a new indicator ˆ R ∞ , which is shown to allow both for localizing the Markov chain Monte Carlo convergence in different quantiles of the target distribution, and at the same time for handling some convergence issues not detected by other ˆ R versions.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the Use of a Local Rˆ to Improve MCMC Convergence Diagnostic\",\"authors\":\"Théo Moins, Julyan Arbel, A. Dutfoy, S. Girard\",\"doi\":\"10.1214/23-ba1399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosing convergence of Markov chain Monte Carlo is crucial and remains an essentially unsolved problem. Among the most popular methods, the potential scale reduction factor, commonly named ˆ R , is an indicator that monitors the convergence of output chains to a target distribution, based on a comparison of the between- and within-variances. Several improvements have been suggested since its introduction in the 90s. Here, we aim at better understanding the ˆ R behavior by proposing a localized version that focuses on quantiles of the target distribution. This new version relies on key theoretical properties of the associated population value. It naturally leads to proposing a new indicator ˆ R ∞ , which is shown to allow both for localizing the Markov chain Monte Carlo convergence in different quantiles of the target distribution, and at the same time for handling some convergence issues not detected by other ˆ R versions.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ba1399\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ba1399","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the Use of a Local Rˆ to Improve MCMC Convergence Diagnostic
Diagnosing convergence of Markov chain Monte Carlo is crucial and remains an essentially unsolved problem. Among the most popular methods, the potential scale reduction factor, commonly named ˆ R , is an indicator that monitors the convergence of output chains to a target distribution, based on a comparison of the between- and within-variances. Several improvements have been suggested since its introduction in the 90s. Here, we aim at better understanding the ˆ R behavior by proposing a localized version that focuses on quantiles of the target distribution. This new version relies on key theoretical properties of the associated population value. It naturally leads to proposing a new indicator ˆ R ∞ , which is shown to allow both for localizing the Markov chain Monte Carlo convergence in different quantiles of the target distribution, and at the same time for handling some convergence issues not detected by other ˆ R versions.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.